Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Am Chem Soc ; 141(14): 5897-5907, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30808163

RESUMEN

Triangular shapes have inspired scientists over time and are common in nature, such as the flower petals of oxalis triangularis, the triangular faces of tetrahedrite crystals, and the icosahedron faces of virus capsids. Supramolecular chemistry has enabled the construction of triangular assemblies, many of which possess functional features. Among these structures, cucurbiturils have been used to build supramolecular triangles, and we recently reported paramagnetic cucurbit[8]uril (CB[8]) triangles, but the reasons for their formation remain unclear. Several parameters have now been identified to explain their formation. At first sight, the radical nature of the guest was of prime importance in obtaining the triangles, and we focused on extending this concept to biradicals to get supramolecular hexaradicals. Two sodium ions were systematically observed by ESI-MS in trimer structures, and the presence of Na+ triggered or strengthened the triangulation of CB[8]/guest 1:1 complexes in solution. X-ray crystallography and molecular modeling have allowed the proposal of two plausible sites of residence for the two sodium cations. We then found that a diamagnetic guest with an H-bond acceptor function is equally good at forming CB[8] triangles. Hence, a guest molecule containing a ketone function has been precisely triangulated thanks to CB[8] and sodium cations as determined by DOSY-NMR and DLS. A binding constant for the triangulation of 1:1 to 3:3 complexes is proposed. This concept has finally been extended to the triangulation of ditopic guests toward network formation by the reticulation of CB[8] triangles using dinitroxide biradicals.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Modelos Moleculares , Conformación Molecular
2.
Solid State Nucl Magn Reson ; 100: 70-76, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30995597

RESUMEN

Whereas specially designed dinitroxide biradicals, reconstitution protocols, oriented sample geometries and NMR probes have helped to much increase the DNP enhancement factors of membrane samples they still lag considerably behind those obtained from glasses made of protein solutions. Here we show that not only the MAS rotor material but also the distribution of the membrane samples within the NMR rotor have a pronounced effect on the DNP enhancement. These observations are rationalized with the cooling efficiency and the internal properties of the sample, monitored by their T1 relaxation, microwave ON versus OFF signal intensities and DNP effect. The data are suggestive that for membranes the speed of cooling has a pronounced effect on the membrane properties and concomitantly the distribution of biradicals within the sample.

3.
J Am Chem Soc ; 139(31): 10609-10612, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28692804

RESUMEN

Dynamic nuclear polarization (DNP) has recently emerged as a tool to enhance the sensitivity of solid-state NMR experiments. However, so far high enhancements (>100) are limited to relatively low magnetic fields, and DNP at fields higher than 9.4 T significantly drops in efficiency. Here we report solid-state Overhauser effect DNP enhancements of over 100 at 18.8 T. This is achieved through the unexpected discovery that enhancements increase rapidly with increasing magic angle spinning (MAS) rates. The measurements are made using 1,3-bisdiphenylene-2-phenylallyl dissolved in o-terphenyl at 40 kHz MAS. We introduce a source-sink diffusion model for polarization transfer which is capable of explaining the experimental observations. The advantage of this approach is demonstrated on mesoporous alumina with the acquisition of well-resolved DNP surface-enhanced 27Al cross-polarization spectra.

4.
Chemphyschem ; 18(15): 2103-2113, 2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28574169

RESUMEN

Dynamic nuclear polarization (DNP) boosts the sensitivity of NMR spectroscopy by orders of magnitude and makes investigations previously out of scope possible. For magic-angle-spinning (MAS) solid-state NMR spectroscopy studies, the samples are typically mixed with biradicals dissolved in a glass-forming solvent and are investigated at cryotemperatures. Herein, we present new biradical polarizing agents developed for matrix-free samples such as supported lipid bilayers, which are systems widely used for the investigation of membrane polypeptides of high biomedical importance. A series of 11 biradicals with different structures, geometries, and physicochemical properties were comprehensively tested for DNP performance in lipid bilayers, some of them developed specifically for DNP investigations of membranes. The membrane-anchored biradicals PyPol-C16, AMUPOL-cholesterol, and bTurea-C16 were found to exhibit improved g-tensor alignment, inter-radical distance, and dispersion. Consequently, these biradicals show the highest signal enhancement factors so far obtained for matrix-free membranes or other matrix-free samples and may potentially shorten NMR acquisition times by three orders of magnitude. Furthermore, the optimal biradical-to-lipid ratio, sample deuteration, and membrane lipid composition were determined under static and MAS conditions. To rationalize biradical performance better, DNP enhancement was measured by using the 13 C and 15 N signals of lipids and a peptide as a function of the biradical concentration, DNP build-up time, resonance line width, quenching effect, microwave power, and MAS frequency.

5.
Angew Chem Int Ed Engl ; 56(30): 8726-8730, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28544173

RESUMEN

Aqueous acrylamide gels can be used to provide dynamic nuclear polarization (DNP) NMR signal enhancements of around 200 at 9.4 T and 100 K. The enhancements are shown to increase with crosslinker concentration and low concentrations of the AMUPol biradical. This DNP matrix can be used in situations where conventional incipient wetness methods fail, such as to obtain DNP surface enhanced NMR spectra from inorganic nanoparticles. In particular, we obtain 113 Cd spectra from CdTe-COOH NPs in minutes. The spectra clearly indicate a highly disordered cadmium-rich surface.

6.
Chemistry ; 22(16): 5598-606, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26992052

RESUMEN

A series of 18 nitroxide biradicals derived from bTurea has been prepared, and their enhancement factors ɛ ((1)H) in cross-effect dynamic nuclear polarization (CE DNP) NMR experiments at 9.4 and 14.1 T and 100 K in a DNP-optimized glycerol/water matrix ("DNP juice") have been studied. We observe that ɛ ((1)H) is strongly correlated with the substituents on the polarizing agents, and its trend is discussed in terms of different molecular parameters: solubility, average e-e distance, relative orientation of the nitroxide moieties, and electron spin relaxation times. We show that too short an e-e distance or too long a T1e can dramatically limit ɛ ((1)H). Our study also shows that the molecular structure of AMUPol is not optimal and its ɛ ((1)H) could be further improved through stronger interaction with the glassy matrix and a better orientation of the TEMPO moieties. A new AMUPol derivative introduced here provides a better ɛ ((1)H) than AMUPol itself (by a factor of ca. 1.2).

7.
J Am Chem Soc ; 137(32): 10238-45, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26197228

RESUMEN

We describe a photochemical method to introduce a single alcohol function directly on cucurbit[n]urils (n = 5, 6, 7, 8) with conversions of the order 95-100% using hydrogen peroxide and UV light. The reaction was easily scaled up to 1 g for CB[6] and CB[7]. Spin trapping of cucurbituril radicals combined with MS experiments allowed us to get insights about the reaction mechanism and characterize CB[5], CB[6], CB[7], and CB[8] monofunctional compounds. Experiments involving (18)O isotopically labeled water indicated that the mechanism was complex and showed signs of both radical and ionic intermediates. DFT calculations allowed estimating the Bond Dissociation Energies (BDEs) of each hydrogen atom type in the CB series, providing an explanation of the higher reactivity of the "equatorial" C-H position of CB[n] compounds. These results also showed that, for CB[8], direct functionalization on the cucurbituril skeleton is more difficult because one of the methylene hydrogen atoms (Hb) has its BDE lowering within the series and coming close to that of Hc, thus opening the way to other types of free radicals generated on the CB[8] skeleton leading to several side products. Yet CB[5]-(OH)1 and CB[8]-(OH)1, the first CB[8] derivative, were obtained in excellent yields thanks to the soft method presented here.

8.
J Am Chem Soc ; 137(46): 14558-61, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26555676

RESUMEN

Efficient dynamic nuclear polarization (DNP) in solids, which enables very high sensitivity NMR experiments, is currently limited to temperatures of around 100 K and below. Here we show how by choosing an adequate solvent, (1)H cross effect DNP enhancements of over 80 can be obtained at 240 K. To achieve this we use the biradical TEKPol dissolved in a glassy phase of ortho-terphenyl (OTP). We study the solvent DNP enhancement of both TEKPol and BDPA in OTP in the range from 100 to 300 K at 9.4 and 18.8 T. Surprisingly, we find that the DNP enhancement decreases only relatively slowly for temperatures below the glass transition of OTP (Tg = 243 K), and (1)H enhancements around 15-20 at ambient temperature can be observed. We use this to monitor molecular dynamic transitions in the pharmaceutically relevant solids Ambroxol and Ibuprofen.

9.
J Am Chem Soc ; 137(28): 9032-43, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26102160

RESUMEN

Membrane proteins often form oligomeric complexes within the lipid bilayer, but factors controlling their assembly are hard to predict and experimentally difficult to determine. An understanding of protein-protein interactions within the lipid bilayer is however required in order to elucidate the role of oligomerization for their functional mechanism and stabilization. Here, we demonstrate for the pentameric, heptahelical membrane protein green proteorhodopsin that solid-state NMR could identify specific interactions at the protomer interfaces, if the sensitivity is enhanced by dynamic nuclear polarization. For this purpose, differently labeled protomers have been assembled into the full pentamer complex embedded within the lipid bilayer. We show for this proof of concept that one specific salt bridge determines the formation of pentamers or hexamers. Data are supported by laser-induced liquid bead ion desorption mass spectrometry and by blue native polyacrylamide gel electrophoresis analysis. The presented approach is universally applicable and opens the door toward analyzing membrane protein interactions within homo-oligomers directly in the membrane.


Asunto(s)
Proteínas Bacterianas/química , Proteobacteria/química , Rodopsinas Microbianas/química , Secuencia de Aminoácidos , Membrana Dobles de Lípidos/química , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Multimerización de Proteína , Sales (Química)/química
10.
Biol Chem ; 396(9-10): 1135-49, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25849794

RESUMEN

ATP binding cassette (ABC) transporters form a superfamily of integral membrane proteins involved in translocation of substrates across the membrane driven by ATP hydrolysis. Despite available crystal structures and extensive biochemical data, many open questions regarding their transport mechanisms remain. Therefore, there is a need to explore spectroscopic techniques such as solid state NMR in order to bridge the gap between structural and mechanistic data. In this study, we investigate the feasibility of using Escherichia coli MsbA as a model ABC transporter for solid state NMR studies. We show that optimised solubilisation and reconstitution procedures enable preparing stable and homogenous protein samples. Depending on the duration of solubilisation, MsbA can be obtained in either an apo- or in a native lipid A bound form. Building onto these optimisations, the first promising MAS-NMR spectra with narrow lines have been recorded. However, further sensitivity improvements are required so that complex NMR experiments can be recorded within a reasonable amount of time. We therefore demonstrate the usability of paramagnetic doping for rapid data acquisition and explore dynamic nuclear polarisation as a method for general signal enhancement. Our results demonstrate that solid state NMR provides an opportunity to address important biological questions related to complex mechanisms of ABC transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Resonancia Magnética Nuclear Biomolecular , Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Proteínas Bacterianas/aislamiento & purificación , Lípido A/química , Modelos Moleculares , Solubilidad
11.
Chemistry ; 21(46): 16404-10, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26403999

RESUMEN

Nitroxide free radicals have been used to study the inner space of one of Rebek's water-soluble capsules. EPR and (1) H NMR spectroscopy, ESI-MS, and DFT calculations showed a preference for the formation of 1:2 complexes. EPR titrations allowed us to determine binding constants (Ka ) in the order of 10(7) M(-2) . EPR spectral-shape analysis provided information on the guest rotational dynamics within the capsule. The interplay between optimum hydrogen bonding upon capsule formation and steric strain for guest accommodation highlights some degree of flexibility for guest inclusion, particularly at the center of the capsule where the hydrogen bond seam can be barely distorted or slightly disturbed.

12.
Chemistry ; 21(37): 12971-7, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26315337

RESUMEN

Dynamic nuclear polarization (DNP) has been shown to greatly enhance spectroscopic sensitivity, creating novel opportunities for NMR studies on complex and large molecular assemblies in life and material sciences. In such applications, however, site-specificity and spectroscopic resolution become critical factors that are usually difficult to control by current DNP-based approaches. We have examined in detail the effect of directly attaching mono- or biradicals to induce local paramagnetic relaxation effects and, at the same time, to produce sizable DNP enhancements. Using a membrane-embedded ion channel as an example, we varied the degree of paramagnetic labeling and the location of the DNP probes. Our results show that the creation of local spin clusters can generate sizable DNP enhancements while preserving the intrinsic benefits of paramagnetic relaxation enhancement (PRE)-based NMR approaches. DNP using chemical labeling may hence provide an attractive route to introduce molecular specificity into DNP studies in life science applications and beyond.


Asunto(s)
Proteínas de la Membrana/química , Marcadores de Spin , Espectroscopía de Resonancia por Spin del Electrón , Microscopía de Polarización , Resonancia Magnética Nuclear Biomolecular
13.
Macromol Rapid Commun ; 36(15): 1416-21, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26010134

RESUMEN

High-field dynamic nuclear polarization (DNP) has emerged as a powerful technique for improving the sensitivity of solid-state NMR (SSNMR), yielding significant sensitivity enhancements for a variety of samples, including polymers. Overall, depending upon the type of polymer, the molecular weight, and the DNP sample preparation method, sensitivity enhancements between 5 and 40 have been reported. These promising enhancements remain, however, far from the theoretical maximum (>1000). Crucial to the success of DNP SSNMR is the DNP signal enhancement (εDNP ), which is the ratio of the NMR signal intensities with and without DNP. It is shown here that, for polymers exhibiting high affinity toward molecular oxygen (e.g., polystyrene), removing part of the absorbed (paramagnetic) oxygen from the solid-state samples available as powders (instead of dissolved or dispersed in a solvent) increases proton nuclear relaxation times and εDNP, hereby providing up to a two-fold sensitivity increase (i.e., a four-fold reduction in experimental time).


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Oxígeno/química , Polímeros/química
14.
J Am Chem Soc ; 136(50): 17570-7, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25418528

RESUMEN

The flexible tetranitroxide 4T has been prepared and was shown to exhibit a nine line EPR spectrum in water, characteristic of significant through space spin exchange (J(ij)) between four electron spins interacting with four nitrogen nuclei (J(ij) ≫ a(N)). Addition of CB[8] to 4T decreases dramatically all the Jij couplings, and the nine line spectrum is replaced by the characteristic three line spectrum of a mononitroxide. The supramolecular association between 4T and CB[8] involves a highly cooperative asymmetric complexation by two CB[8] (K1 = 4027 M(-1); K2 = 202,800 M(-1); α = 201) leading to a rigid complex with remote nitroxide moieties. The remarkable enhancement for the affinity of the second CB[8] corresponds to an allosteric interaction energy of ≈13 kJ mol(-1), which is comparable to that of the binding of oxygen by hemoglobin. These results are confirmed by competition and reduction experiments, DFT and molecular dynamics calculations, mass spectrometry, and liquid state NMR of the corresponding reduced complex bearing hydroxylamine moieties. This study shows that suitably designed molecules can generate allosteric complexation with CB[8]. The molecule must (i) carry several recognizable groups for CB[8] and (ii) be folded so that the first binding event reorganizes the molecule (unfold) for a better subsequent recognition. The presence of accessible protonable amines and H-bond donors to fit with the second point are also further stabilizing groups of CB[8] complexation. In these conditions, the spin exchange coupling between four radicals has been efficiently and finely tuned and the resulting allosteric complexation induced a dramatic stabilization enhancement of the included paramagnetic moieties in highly reducing conditions through the formation of the supramolecular 4T@CB[8]2 complex.


Asunto(s)
Sitio Alostérico , Óxidos N-Cíclicos/química , Óxido Nítrico/química , Receptores Artificiales/química , Agua/química , Sitios de Unión , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares
15.
J Am Chem Soc ; 136(44): 15711-8, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25285480

RESUMEN

There is currently great interest in understanding the limits on NMR signal enhancements provided by dynamic nuclear polarization (DNP), and in particular if the theoretical maximum enhancements can be achieved. We show that over a 2-fold improvement in cross-effect DNP enhancements can be achieved in MAS experiments on frozen solutions by simply incorporating solid particles into the sample. At 9.4 T and ∼105 K, enhancements up to εH = 515 are obtained in this way, corresponding to 78% of the theoretical maximum. We also underline that degassing of the sample is important to achieve highest enhancements. We link the amplification effect to the dielectric properties of the solid material, which probably gives rise to scattering, diffraction, and amplification of the microwave field in the sample. This is substantiated by simulations of microwave propagation. A reduction in sample heating at a given microwave power also likely occurs due to reduced dielectric loss. Simulations indicate that the microwave field (and thus the DNP enhancement) is inhomogeneous in the sample, and we deduce that in these experiments between 5 and 10% of the solution actually yields the theoretical maximum signal enhancement of 658. The effect is demonstrated for a variety of particles added to both aqueous and organic biradical solutions.

16.
J Biomol NMR ; 60(2-3): 157-68, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25284462

RESUMEN

Dynamic nuclear polarization (DNP) has become a powerful method to enhance spectroscopic sensitivity in the context of magnetic resonance imaging and nuclear magnetic resonance spectroscopy. We show that, compared to DNP at lower field (400 MHz/263 GHz), high field DNP (800 MHz/527 GHz) can significantly enhance spectral resolution and allows exploitation of the paramagnetic relaxation properties of DNP polarizing agents as direct structural probes under magic angle spinning conditions. Applied to a membrane-embedded K(+) channel, this approach allowed us to refine the membrane-embedded channel structure and revealed conformational substates that are present during two different stages of the channel gating cycle. High-field DNP thus offers atomic insight into the role of molecular plasticity during the course of biomolecular function in a complex cellular environment.


Asunto(s)
Proteínas Bacterianas/química , Campos Magnéticos , Resonancia Magnética Nuclear Biomolecular , Canales de Potasio/química , Isótopos de Carbono , Activación del Canal Iónico , Solventes , Temperatura
17.
Chemistry ; 20(14): 4064-71, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24590621

RESUMEN

The 5-diethoxyphosphonyl-5-methyl-1-pyrroline N-oxide superoxide spin adduct (DEPMPO-OOH) is much more persistent (about 15 times) than the 5,5-dimethyl-1-pyrroline N-oxide superoxide spin adduct (DMPO-OOH). The diethoxyphosphonyl group is bulkier than the methyl group and its electron-withdrawing effect is much stronger. These two factors could play a role in explaining the different half-lifetimes of DMPO-OOH and DEPMPO-OOH. The trifluoromethyl and the diethoxyphosphonyl groups show similar electron-withdrawing effects but have different sizes. We have thus synthesized and studied 5-methyl-5-trifluoromethyl-1-pyrroline N-oxide (5-TFDMPO), a new trifluoromethyl analogue of DMPO, to compare its spin-trapping performance with those of DMPO and DEPMPO. 5-TFDMPO was prepared in a five-step sequence by means of the Zn/AcOH reductive cyclization of 5,5,5-trifluoro-4-methyl-4-nitropentanal, and the geometry of the molecule was estimated by using DFT calculations. The spin-trapping properties were investigated both in toluene and in aqueous buffer solutions for oxygen-, sulfur-, and carbon-centered radicals. All the spin adducts exhibit slightly different fluorine hyperfine coupling constants, thereby suggesting a hindered rotation of the trifluoromethyl group, which was confirmed by variable-temperature EPR studies and DFT calculations. In phosphate buffer at pH 7.4, the half-life of 5-TFDMPOOOH is about three times shorter than for DEPMPO-OOH and five times longer than for DMPO-OOH. Our results suggest that the stabilization of the superoxide adducts comes from a delicate balance between steric, electronic, and hydrogen-bonding effects that involve the ß group, the hydroperoxyl moiety, and the nitroxide.


Asunto(s)
Carbono/química , Detección de Spin/métodos , Superóxidos/química , Espectroscopía de Resonancia por Spin del Electrón , Estructura Molecular
18.
Chem Res Toxicol ; 27(7): 1155-65, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24890552

RESUMEN

Development of reliable methods and site-specific detection of free radicals is an active area of research. Here, we describe the synthesis and radical-trapping properties of new derivatives of DEPMPO and DIPPMPO, bearing a mitochondria-targeting triphenylphosphonium cationic moiety or guanidinium cationic group. All of the spin traps prepared have been observed to efficiently trap superoxide radical anions in a cell-free system. The superoxide spin adducts exhibited similar spectral properties, indicating no significant differences in the geometry of the cyclic nitroxide moieties of the spin adducts. The superoxide adduct stability was measured and observed to be highest (t1/2 = 73 min) for DIPPMPO nitrone linked to triphenylphosphonium moiety via a short carbon chain (Mito-DIPPMPO). The experimental results and DFT quantum chemical calculations indicate that the cationic property of the triphenylphosphonium group may be responsible for increased superoxide trapping efficiency and adduct stability of Mito-DIPPMPO, as compared to the DIPPMPO spin trap. The studies of uptake of the synthesized traps into isolated mitochondria indicated the importance of both cationic and lipophilic properties, with the DEPMPO nitrone linked to the triphenylphosphonium moiety via a long carbon chain (Mito10-DEPMPO) exhibiting the highest mitochondrial uptake. We conclude that, of the synthesized traps, Mito-DIPPMPO and Mito10-DEPMPO are the best candidates for potential mitochondria-specific spin traps for use in biologically relevant systems.


Asunto(s)
Óxidos N-Cíclicos/metabolismo , Mitocondrias Cardíacas/metabolismo , Organofosfonatos/metabolismo , Pirroles/metabolismo , Superóxidos/metabolismo , Animales , Óxidos N-Cíclicos/química , Organofosfonatos/química , Pirroles/química , Ratas , Detección de Spin , Superóxidos/química
19.
Phys Chem Chem Phys ; 16(33): 17822-7, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25036596

RESUMEN

Grafting reactive molecular complexes on dehydroxylated amorphous silica is a strategy to develop "single-site" heterogeneous catalysts. In general, only the reactivity of isolated silanols is invoked for silica dehydroxylated at 700 °C ([SiO(2-700)]), though ca. 10% of the surface silanols are in fact geminal Q2-silanols. Here we report the reaction of allyltributylstannane with [SiO(2-700)] and find that the geminal Q2-silanols react to form products that would formally arise from vicinal Q3-silanols that are not present on [SiO(2-700)], indicating that a surface rearrangement occurs. The reorganization of the silica surface is unique to silica dehydroxylated at 700 °C or above. The findings were identified using Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) combined with DFT calculations.

20.
J Am Chem Soc ; 135(51): 19275-81, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24279469

RESUMEN

Dynamic nuclear polarization (DNP) enhances the sensitivity of solid-state NMR (SSNMR) spectroscopy by orders of magnitude and, therefore, opens possibilities for novel applications from biology to materials science. This multitude of opportunities implicates a need for high-performance polarizing agents, which integrate specific physical and chemical features tailored for various applications. Here, we demonstrate that for the biradical bTbK in complex with captisol (CAP), a ß-cyclodextrin derivative, host-guest assembling offers a new and easily accessible approach for the development of new polarizing agents. In contrast to bTbK, the CAP-bTbK complex is water-soluble and shows significantly improved DNP performance compared to the commonly used DNP agent TOTAPOL. Furthermore, NMR and EPR data reveal improved electron and nuclear spin relaxation properties for bTbK within the host molecule. The numerous possibilities to functionalize host molecules will permit designing novel radical complexes targeting diverse applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA