Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105526, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043797

RESUMEN

Despite antiretroviral therapy (ART), chronic forms of HIV-associated neurocognitive disorders (HAND) affect an estimated 50% of individuals living with HIV, greatly impacting their quality of life. The prevailing theory of HAND progression posits that chronic inflammation arising from the activation of latent viral reservoirs leads to progressive damage in the central nervous system (CNS). Recent evidence indicates that blood-brain barrier (BBB) pericytes are capable of active HIV-1 infection; however, their latent infection has not been defined. Given their location and function, BBB pericytes are poised to be a key viral reservoir in the development of HAND. We present the first transcriptional analysis of uninfected, active, and latent human BBB pericytes, revealing distinct transcriptional phenotypes. In addition, we demonstrate that latent infection of BBB pericytes relies on AKT signaling for reservoir survival. These findings provide insight into the state of reservoir maintenance in the CNS during HIV-1 infection and provide novel targets for reservoir clearance.


Asunto(s)
Barrera Hematoencefálica , Reservorios de Enfermedades , Infecciones por VIH , VIH-1 , Infección Latente , Pericitos , Humanos , Barrera Hematoencefálica/virología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/transmisión , Infecciones por VIH/virología , Infección Latente/virología , Pericitos/virología , Proteínas Proto-Oncogénicas c-akt/genética , Calidad de Vida , Latencia del Virus , Reservorios de Enfermedades/virología
2.
Am J Physiol Cell Physiol ; 326(2): C487-C504, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145295

RESUMEN

Blood-brain barrier (BBB) breakdown is one of the pathophysiological characteristics of ischemic stroke, which may contribute to the progression of brain tissue damage and subsequent neurological impairment. Human immunodeficiency virus (HIV)-infected individuals are at greater risk for ischemic stroke due to diminished immune function and HIV-associated vasculopathy. Studies have shown that astrocytes are involved in maintaining BBB integrity and facilitating HIV-1 infection in the brain. The present study investigated whether targeting astrocyte-endothelial cell signaling with cenicriviroc (CVC), a dual chemokine receptor (CCR)2 and CCR5 antagonist, may protect against dysregulation of cross talk between these cells after oxygen-glucose deprivation/reoxygenation (OGD/R) combined with HIV-1 infection. Permeability assay with 10 kDa fluorescein isothiocyanate (FITC)-dextran demonstrated that CVC alleviated endothelial barrier disruption in noncontact coculture of human brain microvascular endothelial cells (HBMECs) with HIV-1-infected human astrocytes, and reversed downregulation of tight junction protein claudin-5 induced by OGD/R- and HIV-1. Moreover, CVC attenuated OGD/R- and HIV-1-triggered upregulation of the NOD-like receptor protein-3 (NLRP3) inflammasome and IL-1ß secretion. Treatment with CVC also suppressed astrocyte pyroptosis by attenuating cleaved caspase-1 levels and the formation of cleaved N-terminal GSDMD (N-GSDMD). Secretome profiling revealed that CVC ameliorated secretion levels of chemokine CC chemokine ligand 17 (CCL17), adhesion molecule intercellular adhesion molecule-1 (ICAM-1), and T cell activation modulator T cell immunoglobulin and mucin domain 3 (TIM-3) by astrocytes synergistically induced by OGD/R and HIV-1. Overall, these results suggest that CVC contributes to restoring astrocyte-endothelial cross interactions in an astrocyte-dependent manner via protection against NLRP3 activation and pyroptosis.NEW & NOTEWORTHY The present study reveals the role of astrocytic NOD-like receptor protein-3 (NLRP3) inflammasome in dysfunctional astrocyte-endothelial cross interactions triggered in response to oxygen/glucose deprivation injury associated with human immunodeficiency virus type 1 (HIV-1) infection. Our results suggest that blocking NLRP3 inflammasome activation and pyroptosis-mediated inflammation with cenicriviroc (CVC) may constitute a potentially effective therapeutic strategy for blood-brain barrier (BBB) protection during HIV-1-associated ischemic stroke.


Asunto(s)
Infecciones por VIH , VIH-1 , Imidazoles , Accidente Cerebrovascular Isquémico , Sulfóxidos , Humanos , Astrocitos/metabolismo , Inflamasomas/metabolismo , Inflamasomas/farmacología , VIH-1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Células Endoteliales/metabolismo , Piroptosis , Proteínas NLR/metabolismo , Oxígeno/metabolismo , Isquemia/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Glucosa/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo
3.
Retrovirology ; 19(1): 27, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476484

RESUMEN

While HIV-1 is primarily an infection of CD4 + T cells, there is an emerging interest towards understanding how infection of other cell types can contribute to HIV-associated comorbidities. For HIV-1 to cross from the blood stream into tissues, the virus must come in direct contact with the vascular endothelium, including pericytes that envelope vascular endothelial cells. Pericytes are multifunctional cells that have been recognized for their essential role in angiogenesis, vessel maintenance, and blood flow rate. Most importantly, recent evidence has shown that pericytes can be a target of HIV-1 infection and support an active stage of the viral life cycle, with latency also suggested by in vitro data. Pericyte infection by HIV-1 has been confirmed in the postmortem human brains and in lungs from SIV-infected macaques. Moreover, pericyte dysfunction has been implicated in a variety of pathologies ranging from ischemic stroke to diabetes, which are common comorbidities among people with HIV-1. In this review, we discuss the role of pericytes during HIV-1 infection and their contribution to the progression of HIV-associated comorbidities.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Células Endoteliales
4.
Cell Mol Neurobiol ; 42(7): 2131-2146, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34086179

RESUMEN

The blood-brain barrier (BBB) is essential for the homeostasis of the central nervous system (CNS). Functions of the BBB are performed by the neurovascular unit (NVU), which consists of endothelial cells, pericytes, astrocytes, microglia, basement membrane, and neurons. NVU cells interact closely and together are responsible for neurovascular coupling, BBB integrity, and transendothelial fluid transport. Studies have shown that NVU dysfunction is implicated in several acute and chronic neurological diseases, including Alzheimer's disease, multiple sclerosis, and stroke. The mechanisms of NVU disruption remain poorly understood, partially due to difficulties in selective targeting of NVU cells. In this review, we discuss the relative merits of available protein markers and drivers of the NVU along with recent advancements that have been made in the field to increase efficiency and specificity of NVU research.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Astrocitos , Sistema Nervioso Central , Pericitos
5.
J Neuroinflammation ; 18(1): 167, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34325716

RESUMEN

BACKGROUND: Neurological complications are common in patients affected by COVID-19 due to the ability of SARS-CoV-2 to infect brains. While the mechanisms of this process are not fully understood, it has been proposed that SARS-CoV-2 can infect the cells of the neurovascular unit (NVU), which form the blood-brain barrier (BBB). The aim of the current study was to analyze the expression pattern of the main SARS-CoV-2 receptors in naïve and HIV-1-infected cells of the NVU in order to elucidate a possible pathway of the virus entry into the brain and a potential modulatory impact of HIV-1 in this process. METHODS: The gene and protein expression profile of ACE2, TMPRSS2, ADAM17, BSG, DPP4, AGTR2, ANPEP, cathepsin B, and cathepsin L was assessed by qPCR, immunoblotting, and immunostaining, respectively. In addition, we investigated if brain endothelial cells can be affected by the exposure to the S1 subunit of the S protein, the domain responsible for the direct binding of SARS-CoV-2 to the ACE2 receptors. RESULTS: The receptors involved in SARS-CoV-2 infection are co-expressed in the cells of the NVU, especially in astrocytes and microglial cells. These receptors are functionally active as exposure of endothelial cells to the SARS CoV-2 S1 protein subunit altered the expression pattern of tight junction proteins, such as claudin-5 and ZO-1. Additionally, HIV-1 infection upregulated ACE2 and TMPRSS2 expression in brain astrocytes and microglia cells. CONCLUSIONS: These findings provide key insight into SARS-CoV-2 recognition by cells of the NVU and may help to develop possible treatment of CNS complications of COVID-19.


Asunto(s)
Vasos Sanguíneos/metabolismo , COVID-19/complicaciones , Infecciones por VIH/metabolismo , VIH-1 , Neuronas/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Astrocitos/metabolismo , Encefalopatías/etiología , Células Cultivadas , Endotelio Vascular/metabolismo , Humanos , Microglía/metabolismo , Enfermedades del Sistema Nervioso/etiología , Cultivo Primario de Células , Receptor de Angiotensina Tipo 2 , Replicación Viral
6.
FASEB J ; 34(12): 16319-16332, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33058236

RESUMEN

HIV-1 enters the brain by altering properties of the blood-brain barrier (BBB). Recent evidence indicates that among cells of the BBB, pericytes are prone to HIV-1 infection. Occludin (ocln) and caveolin-1 (cav-1) are critical determinants of BBB integrity that can regulate barrier properties of the BBB in response to HIV-1 infection. Additionally, Alix is an early acting endosomal factor involved in HIV-1 budding from the cells. The aim of the present study was to evaluate the role of cav-1, ocln, and Alix in HIV-1 infection of brain pericytes. Our results indicated that cav-1, ocln, and Alix form a multi-protein complex in which they cross-regulate each other's expression. Importantly, the stability of this complex was affected by HIV-1 infection. Modifications of the complex resulted in diminished HIV-1 infection and alterations of the cytokine profile produced by brain pericytes. These results identify a novel mechanism involved in HIV-1 infection contributing to a better understanding of the HIV-1 pathology and the associated neuroinflammatory responses.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Caveolina 1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Infecciones por VIH/metabolismo , Ocludina/metabolismo , Pericitos/metabolismo , Transporte Biológico/fisiología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/virología , Encéfalo/virología , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/virología , Células HEK293 , Infecciones por VIH/virología , VIH-1/patogenicidad , Humanos
7.
J Immunol ; 195(11): 5415-20, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26503956

RESUMEN

Loss of the regulatory mechanisms that avoid excessive or constitutive activation of NF-κB may be associated with chronic inflammatory disorders, including rheumatoid arthritis (RA). After massive sequencing of 158 regulators of the NF-κB pathway in RA patients, we focused on a scarcely known gene, ASCC1, and showed that it potently inhibits the expression of NF-κB target genes (TRAIL, TNF-α, cIAP-1, IL8) and blocks activation of a NF-κB-luciferase reporter construct in five different human cell lines. Therefore, ASCC1 may contribute to avoiding a pathologic activation of this transcription factor. A truncated variant of ASCC1 (p.S78*) was found in RA patients and control individuals. Functional in vitro studies revealed that truncation abrogated the NF-κB inhibition capacity of ASCC1. In contrast with full-length protein, truncated ASCC1 did not reduce the transcriptional activation of NF-κB and the secretion of TNF-α in response to inflammatory stimuli. We analyzed the clinical impact of p.S78* variant in 433 patients with RA and found that heterozygous carriers of this variant needed more disease-modifying antirheumatic drugs, and more patients with this genotype needed treatment with corticoids and biologic agents. Moreover, the truncated allele-carrier group had lower rates of remission compared with the full-length variant carriers. Overall, our findings show for the first time, to our knowledge, that ASCC1 inhibits NF-κB activation and that a truncated and inactive variant of ASCC1 is associated with a more severe disease, which could have clinical value for assessing the progression and prognosis of RA.


Asunto(s)
Artritis Reumatoide/patología , Proteínas Portadoras/fisiología , FN-kappa B/antagonistas & inhibidores , Activación Transcripcional/genética , Anciano , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Secuencia de Bases , Proteínas Portadoras/genética , Línea Celular Tumoral , Activación Enzimática , Femenino , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Proteínas Inhibidoras de la Apoptosis/biosíntesis , Interleucina-8/biosíntesis , Células MCF-7 , Masculino , FN-kappa B/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal/genética , Ligando Inductor de Apoptosis Relacionado con TNF/biosíntesis , Factor de Necrosis Tumoral alfa/biosíntesis
8.
Sci Total Environ ; 952: 175886, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39218115

RESUMEN

The study evaluates the impact of environmental toxicants, such as polycyclic aromatic hydrocarbons (PAHs), on circadian regulations and functions of brain endothelial cells, which form the main structural element of the blood-brain barrier (BBB). PAH are lipophilic and highly toxic environmental pollutants that accumulate in human and animal tissues. Environmental factors related to climate change, such as an increase in frequency and intensity of wildfires or enhanced strength of hurricanes or tropical cyclones, may lead to redistribution of these toxicants and enhanced human exposure. These natural disasters are also associated with disruption of circadian rhythms in affected populations, linking increased exposure to environmental toxicants to alterations of circadian rhythm pathways. Several vital physiological processes are coordinated by circadian rhythms, and disruption of the circadian clock can contribute to the development of several diseases. The blood-brain barrier (BBB) is crucial for protecting the brain from blood-borne harmful substances, and its integrity is influenced by circadian rhythms. Exposure of brain endothelial cells to a human and environmentally-relevant PAH mixture resulted in dose-dependent alterations of expression of critical circadian modulators, such as Clock, Bmal1, Cry1/2, and Per1/2. Moreover, silencing of the circadian Clock gene potentiated the impact of PAHs on the expression of the main tight junction genes and proteins (namely, claudin-5, occludin, JAM-2, and ZO-2), as well as mitochondrial bioenergetics. Findings from this study contribute to a better understanding of pathological influence of PAH-induced health effects, especially those related to circadian rhythm disruption.


Asunto(s)
Barrera Hematoencefálica , Ritmo Circadiano , Hidrocarburos Policíclicos Aromáticos , Uniones Estrechas , Hidrocarburos Policíclicos Aromáticos/toxicidad , Humanos , Barrera Hematoencefálica/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Metabolismo Energético/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Contaminantes Ambientales/toxicidad
9.
Res Sq ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38659765

RESUMEN

Disruptions in pericyte and endothelial cell expression can compromise the integrity of the blood-brain barrier (BBB), leading to neurovascular dysfunction and the development of neurological disorders. However, the study of microvessel RNAs has been limited to tissue homogenates, with spatial visualization only available for protein targets. We introduce an innovative microvessel isolation technique that is RNA-friendly for the purpose of coupling with RNAscope analysis. RNA-friendly microvessel isolation combined with RNAscope analysis enables the visualization of cell-specific RNA within the spatial and histological context of the BBB. Using this approach, we have gained valuable insights into the structural and functional differences associated with the microvessels of 5XFAD mice, a mouse model of Alzheimer's disease (AD). RNAscope analysis revealed a decrease in pericytes from microvessels isolated from 5XFAD mice in comparison to wild-type mice. Additionally, the microvessels of 5XFAD mice exhibited an increase in TYROBP mRNA expression. These findings significantly advance our understanding of neurovascular interactions and hold great promise for guiding the development of targeted therapeutic interventions. This innovative approach enables visualization of cell RNA while preserving the spatial and histological context of the BBB, shedding light on the mechanisms underlying neurovascular unit communication.

10.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895303

RESUMEN

Occludin (ocln) is one of the main regulatory cells of the blood-brain barrier (BBB). Ocln silencing resulted in alterations of the gene expression signatures of a variety of genes of the innate immunity system, including IFN-stimulated genes (ISGs) and the antiviral retinoic acid-inducible gene-1 (RIG-1) signaling pathway, which functions as a regulator of the cytoplasmic sensors upstream of the mitochondrial antiviral signaling protein (MAVS). Indeed, we observed dysfunctional mitochondrial bioenergetics, dynamics, and autophagy in our system. Alterations of mitochondrial bioenergetics and innate immune protection translated into worsened ischemic stroke outcomes in EcoHIV-infected ocln deficient mice. Overall, these results allow for a better understanding of the molecular mechanisms of viral infection in the brain and describe a previously unrecognized role of ocln as a key factor in the control of innate immune responses and mitochondrial dynamics, which affect cerebral vascular diseases such as ischemic stroke.

11.
Cell Rep ; 43(10): 114848, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39392753

RESUMEN

Ischemic stroke and cerebral amyloid angiopathy (CAA) pose significant challenges in an aging population, particularly in post-stroke recovery. Using the 5xFAD mouse model, we explore the relationship between CAA, ischemic stroke, and tissue recovery. We hypothesize that amyloid-beta accumulation worsens stroke outcomes by inducing blood-brain barrier (BBB) dysfunction, leading to impaired neurogenesis. Our findings show that CAA exacerbates stroke outcomes, with mice exhibiting constricted BBB microvessels, reduced cerebral blood flow, and impaired tissue recovery. Transcriptional analysis shows that endothelial cells and neural progenitor cells (NPCs) in the hippocampus exhibit differential gene expression in response to CAA and stroke, specifically targeting the phosphatidylinositol 3-kinase (PI3K) pathway. In vitro experiments with human NPCs validate these findings, showing that disruption of the CXCL12-PIK3C2A-CREB3L2 axis impairs neurogenesis. Notably, PI3K pathway activation restores neurogenesis, highlighting a potential therapeutic approach. These results suggest that CAA combined with stroke induces microvascular dysfunction and aberrant neurogenesis through this specific pathway.

12.
J Hazard Mater ; 454: 131499, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37126901

RESUMEN

Polychlorinated biphenyls (PCBs) are lipophilic and persistent environmental toxicants, which pose health threats to the exposed population. Among several organs and cell types, vascular tissue and endothelial cells are especially prone to PCB-induced toxicity. Exposure to PCBs can exert detrimental impacts on biological pathways, expression of transcription factors, and tight junction proteins that are integral to the functionality of endothelial cells. Because biological and cellular processes are tightly regulated by circadian rhythms, and disruption of the circadian system may cause several diseases, we evaluated if exposure to PCBs can alter the expression of the major endothelial circadian regulators. In addition, we studied if dysregulation of circadian rhythms by silencing the brain and muscle ARNT-like 1 (Bmal1) gene can contribute to alterations of brain endothelial cells in response to PCB treatment. We demonstrated that diminished expression of Bmal1 enhances PCB-induced dysregulation of tight junction complexes, such as the expression of occludin, JAM-2, ZO-1, and ZO-2 especially at pathologically relevant longer PCB exposure times. Overall, the obtained results imply that dysregulation of the circadian clock is involved in endothelial toxicity of PCBs. The findings provide new insights for toxicological studies focused on the interactions between environmental pollutants and regulation of circadian rhythms.


Asunto(s)
Relojes Circadianos , Contaminantes Ambientales , Bifenilos Policlorados , Bifenilos Policlorados/toxicidad , Células Endoteliales , Relojes Circadianos/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Contaminantes Ambientales/toxicidad
13.
Mol Neurobiol ; 60(9): 4966-4982, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37209263

RESUMEN

HIV-1-associated blood brain barrier (BBB) alterations and neurocognitive disorders are frequent clinical manifestations in HIV-1 infected patients. The BBB is formed by cells of the neurovascular unit (NVU) and sealed together by tight junction proteins, such as occludin (ocln). Pericytes are a key cell type of NVU that can harbor HIV-1 infection via a mechanism that is regulated, at least in part, by ocln. After viral infection, the immune system starts the production of interferons, which induce the expression of the 2'-5'-oligoadenylate synthetase (OAS) family of interferon stimulated genes and activate the endoribonuclease RNaseL that provides antiviral protection by viral RNA degradation. The current study evaluated the involvement of the OAS genes in HIV-1 infection of cells of NVU and the role of ocln in controlling OAS antiviral signaling pathway. We identified that ocln modulates the expression levels of the OAS1, OAS2, OAS3, and OASL genes and proteins and, in turn, that the members of the OAS family can influence HIV replication in human brain pericytes. Mechanistically, this effect was regulated via the STAT signaling. HIV-1 infection of pericytes significantly upregulated expression of all OAS genes at the mRNA level but selectively OAS1, OAS2, and OAS3 at the protein level. Interestingly no changes were found in RNaseL after HIV-1 infection. Overall, these results contribute to a better understanding of the molecular mechanisms implicated in the regulation of HIV-1 infection in human brain pericytes and suggest a novel role for ocln in controlling of this process.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Interferones , Ocludina/genética , VIH-1/metabolismo , 2',5'-Oligoadenilato Sintetasa/genética , Infecciones por VIH/genética , Antivirales
14.
Trends Neurosci ; 46(8): 682-693, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37330380

RESUMEN

HIV-associated comorbidities, such as ischemic stroke, are prevalent in people with HIV (PWH). Several studies both in animal models and humans have revealed an association between activation of the inflammasome in HIV-1 infection and stroke. The gut microbiota is an important component in controlling neuroinflammation in the CNS. It has also been proposed to be involved in the pathobiology of HIV-1 infection, and has been associated with an increase in activation of the inflammasome. In this review, we provide an overview of the microbiota-gut-inflammasome-brain axis, focusing on the NLRP3 inflammasome and dysregulation of the microbiome as risk factors that may contribute to the outcome of ischemic stroke and recovery in PWH. We also focus on the potential of targeting the NLRP3 inflammasome as a novel therapeutic approach for PWH who are at risk of developing cerebrovascular diseases.


Asunto(s)
Infecciones por VIH , VIH-1 , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Humanos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Accidente Cerebrovascular Isquémico/complicaciones , Disbiosis/complicaciones , Accidente Cerebrovascular/complicaciones , Infecciones por VIH/complicaciones
15.
Fluids Barriers CNS ; 20(1): 73, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37840143

RESUMEN

Compromised structure and function of the blood-brain barrier (BBB) is one of the pathological hallmarks of brain infection by HIV-1. BBB damage during HIV-1 infection has been associated with modified expression of tight junction (TJ) proteins, including occludin. Recent evidence indicated occludin as a redox-sensitive, multifunctional protein that can act as both an NADH oxidase and influence cellular metabolism through AMPK kinase. One of the newly identified functions of occludin is its involvement in regulating HIV-1 infection. Studies suggest that occludin expression levels and the rate of HIV-1 infection share a reverse, bidirectional relationship; however, the mechanisms of this relationship are unclear. In this review, we describe the pathways involved in the regulation of HIV-1 infection by occludin. We propose that occludin may serve as a potential therapeutic target to control HIV-1 infection and to improve the lives of people living with HIV-1.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Ocludina/metabolismo , VIH-1/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo
16.
Res Sq ; 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36778388

RESUMEN

HIV-1-associated blood brain barrier (BBB) alterations and neurocognitive disorders are frequent clinical manifestations in HIV-1 infected patients. The BBB is formed by cells of the neurovascular unit (NVU) and sealed together by tight junction (TJ) proteins, such as occludin (ocln). Pericytes are a key cell type of NVU that can harbor HIV-1 infection via a mechanism that is regulated, at least in part, by ocln. After viral infection, the immune system starts the production of interferons, which induce the expression of the 2'-5'-oligoadenylate synthetase (OAS) family of interferon stimulated genes and activate the endoribonuclease RNaseL that provides antiviral protection by viral RNA degradation. The current study evaluated the involvement of the OAS genes in HIV-1 infection of cells of NVU and the role of ocln in controlling OAS antiviral signaling pathway. We identified that ocln modulates the expression levels of the OAS1, OAS2, OAS3, and OASL genes and proteins and, in turn, that the members of the OAS family can influence HIV replication in human brain pericytes. Mechanistically, this effect was regulated via the STAT signaling. HIV-1 infection of pericytes significantly upregulated expression of all OAS genes at the mRNA level but selectively OAS1, OAS2 and OAS3 at the protein level. Interestingly no changes were found in RNaseL after HIV-1 infection. Overall, these results contribute to a better understanding of the molecular mechanisms implicated in the regulation of HIV-1 infection in human brain pericytes and suggest a novel role for ocln in controlling of this process.

17.
Viruses ; 15(3)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36992454

RESUMEN

Neurological effects of COVID-19 and long-COVID-19, as well as neuroinvasion by SARS-CoV-2, still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro exposure by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the blood-brain barrier. Despite the low to non-productive viral replication, SARS-CoV-2-exposed cultures displayed increased immunoreactivity for cleaved caspase-3, an indicator of apoptotic cell death, tight junction protein expression, and immunolocalization. Transcriptomic profiling of SARS-CoV-2-challenged cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.


Asunto(s)
COVID-19 , FN-kappa B , Humanos , FN-kappa B/metabolismo , SARS-CoV-2/metabolismo , Células Endoteliales/metabolismo , Síndrome Post Agudo de COVID-19 , COVID-19/metabolismo , Encéfalo , Barrera Hematoencefálica , Mitocondrias/metabolismo
18.
J Vis Exp ; (188)2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36282703

RESUMEN

Ischemic stroke is a major cause of death and disability worldwide with limited therapeutic options. The neuropathology of ischemic stroke is characterized by an interruption in blood supply to the brain leading to cell death and cognitive dysfunction. During and after ischemic stroke, blood-brain barrier (BBB) dysfunction facilitates injury progression and contributes to poor patient recovery. Current BBB models primarily include endothelial monocultures and double co-cultures with either astrocytes or pericytes. Such models lack the ability to fully imitate a dynamic brain microenvironment, which is essential for cell-to-cell communication. Additionally, commonly used BBB models often contain immortalized human endothelial cells or animal-derived (rodent, porcine, or bovine) cell cultures that pose translational limitations. This paper describes a novel well-insert-based BBB model containing only primary human cells (brain microvascular endothelial cells, astrocytes, and brain vascular pericytes) enabling the investigation of ischemic brain injury in vitro. The effects of oxygen-glucose deprivation (OGD) on barrier integrity were assessed by passive permeability, transendothelial electrical resistance (TEER) measurements,and direct visualization of hypoxic cells. The presented protocol offers a distinct advantage inmimicking the intercellular environment of the BBB in vivo, serving as a more realistic in vitro BBB model for developing new therapeutic strategies in the setting of ischemic brain injury.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Humanos , Animales , Bovinos , Porcinos , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Cultivo Primario de Células , Técnicas de Cocultivo , Astrocitos/metabolismo , Oxígeno/metabolismo , Glucosa/metabolismo , Lesiones Encefálicas/patología
19.
Fluids Barriers CNS ; 19(1): 63, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982454

RESUMEN

COVID-19, which is caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), has resulted in devastating morbidity and mortality worldwide due to lethal pneumonia and respiratory distress. In addition, the central nervous system (CNS) is well documented to be a target of SARS-CoV-2, and studies detected SARS-CoV-2 in the brain and the cerebrospinal fluid of COVID-19 patients. The blood-brain barrier (BBB) was suggested to be the major route of SARS-CoV-2 infection of the brain. Functionally, the BBB is created by an interactome between endothelial cells, pericytes, astrocytes, microglia, and neurons, which form the neurovascular units (NVU). However, at present, the interactions of SARS-CoV-2 with the NVU and the outcomes of this process are largely unknown. Moreover, age was described as one of the most prominent risk factors for hospitalization and deaths, along with other comorbidities such as diabetes and co-infections. This review will discuss the impact of SARS-CoV-2 on the NVU, the expression profile of SARS-CoV-2 receptors in the different cell types of the CNS and the possible role of aging in the neurological outcomes of COVID-19. A special emphasis will be placed on mitochondrial functions because dysfunctional mitochondria are also a strong inducer of inflammatory reactions and the "cytokine storm" associated with SARS-CoV-2 infection. Finally, we will discuss possible drug therapies to treat neural endothelial function in aged patients, and, thus, alleviate the neurological symptoms associated with COVID-19.


Asunto(s)
COVID-19 , Anciano , Barrera Hematoencefálica , Encéfalo , Células Endoteliales , Humanos , SARS-CoV-2
20.
Artículo en Inglés | MEDLINE | ID: mdl-36649440

RESUMEN

Aim: Elevated brain deposits of amyloid beta (Aß40) contribute to neuropathology and cognitive dysfunction in Alzheimer's disease (AD). However, the role of the blood-brain barrier (BBB) as an interface for the transfer of Aß40 from the periphery into the brain is not well characterized. In addition, a substantial population of neural progenitor cells (NPCs) resides in close proximity to brain capillaries that form the BBB. The aim of this study is to understand the impact of brain endothelium-derived extracellular vesicles (EV) containing Aß40 on metabolic functions and differentiation of NPCs. Methods: Endothelial EVs were derived from an in vitro model of the brain endothelium treated with 100 nM Aß40 or PBS. We then analyzed the impact of these EVs on mitochondrial morphology and bioenergetic disruption of NPCs. In addition, NPCs were differentiated and neurite development upon exposure to EVs was assessed using the IncuCyte Zoom live cell imaging system. Results: We demonstrate that physiological concentrations of Aß40 can be transferred to accumulate in NPCs via endothelial EVs. This transfer results in mitochondrial dysfunction, disrupting crista morphology, metabolic rates, fusion and fission dynamics of NPCs, as well as their neurite development. Conclusion: Intercellular transfer of Aß40 is carried out by brain endothelium-derived EVs, which can affect NPC differentiation and induce mitochondrial dysfunction, leading to aberrant neurogenesis. This has pathological implications because NPCs growing into neurons are incorporated into cerebral structures involved in learning and memory, two common phenotypes affected in AD and related dementias.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA