Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 117(4): 1130-40; quiz 1436, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21068435

RESUMEN

Transcranial Doppler (TCD) is used to detect children with sickle cell anemia (SCA) who are at risk for stroke, and transfusion programs significantly reduce stroke risk in patients with abnormal TCD. We describe the predictive factors and outcomes of cerebral vasculopathy in the Créteil newborn SCA cohort (n = 217 SS/Sß(0)), who were early and yearly screened with TCD since 1992. Magnetic resonance imaging/magnetic resonance angiography was performed every 2 years after age 5 (or earlier in case of abnormal TCD). A transfusion program was recommended to patients with abnormal TCD and/or stenoses, hydroxyurea to symptomatic patients in absence of macrovasculopathy, and stem cell transplantation to those with human leukocyte antigen-genoidentical donor. Mean follow-up was 7.7 years (1609 patient-years). The cumulative risks by age 18 years were 1.9% (95% confidence interval [95% CI] 0.6%-5.9%) for overt stroke, 29.6% (95% CI 22.8%-38%) for abnormal TCD, which reached a plateau at age 9, whereas they were 22.6% (95% CI 15.0%-33.2%) for stenosis and 37.1% (95% CI 26.3%-50.7%) for silent stroke by age 14. Cumulating all events (stroke, abnormal TCD, stenoses, silent strokes), the cerebral risk by age 14 was 49.9% (95% CI 40.5%-59.3%); the independent predictive factors for cerebral risk were baseline reticulocytes count (hazard ratio 1.003/L × 10(9)/L increase, 95% CI 1.000-1.006; P = .04) and lactate dehydrogenase level (hazard ratio 2.78/1 IU/mL increase, 95% CI1.33-5.81; P = .007). Thus, early TCD screening and intensification therapy allowed the reduction of stroke-risk by age 18 from the previously reported 11% to 1.9%. In contrast, the 50% cumulative cerebral risk suggests the need for more preventive intervention.


Asunto(s)
Anemia de Células Falciformes/diagnóstico por imagen , Anemia de Células Falciformes/terapia , Enfermedades Arteriales Cerebrales/diagnóstico por imagen , Enfermedades Arteriales Cerebrales/terapia , Tamizaje Neonatal/métodos , Ultrasonografía Doppler Transcraneal/métodos , Enfermedades Arteriales Cerebrales/congénito , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Enfermedades del Recién Nacido/diagnóstico por imagen , Enfermedades del Recién Nacido/terapia , Angiografía por Resonancia Magnética/efectos adversos , Angiografía por Resonancia Magnética/métodos , Masculino , Tamizaje Neonatal/efectos adversos , Factores de Tiempo , Resultado del Tratamiento , Ultrasonografía Doppler Transcraneal/efectos adversos , Ultrasonografía Doppler Transcraneal/estadística & datos numéricos
2.
Blood ; 112(10): 4314-7, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18772456

RESUMEN

Stroke is predicted by abnormally high cerebral velocities by transcranial doppler (TCD). This study aimed at defining predictive factors for abnormally high velocities (>/= 2 m/sec) based on the Créteil pediatric sickle cell anemia (SCA) cohort composed of 373 stroke-free SCA children. alpha genes and beta-globin haplotypes were determined. Biologic parameters were obtained at baseline. alpha-thalassemia was present in 155 of 325 and G6PD deficiency in 36 of 325 evaluated patients. TCD was abnormal in 62 of 373 patients. Multivariate logistic regression analysis showed that G6PD deficiency (odds ratio [OR] = 3.36, 95% confidence interval [CI] 1.10-10.33; P = .034), absence of alpha-thalassemia (OR = 6.45, 95% CI 2.21-18.87; P = .001), hemoglobin (OR per g/dL = 0.63, 95% CI 0.41-0.97; P = .038), and lactate dehydrogenase (LDH) levels (OR per IU/L = 1.001, 95% CI 1.000-1.002; P = .047) were independent risk factors for abnormally high velocities. This study confirms the protective effect of alpha-thalassemia and shows for the first time that G6PD deficiency and hemolysis independently increase the risk of cerebral vasculopathy.


Asunto(s)
Anemia de Células Falciformes/fisiopatología , Circulación Cerebrovascular , Deficiencia de Glucosafosfato Deshidrogenasa/fisiopatología , Hemólisis , Talasemia alfa/fisiopatología , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/diagnóstico por imagen , Anemia de Células Falciformes/genética , Velocidad del Flujo Sanguíneo/genética , Circulación Cerebrovascular/genética , Estudios de Cohortes , Femenino , Globinas/análisis , Globinas/genética , Deficiencia de Glucosafosfato Deshidrogenasa/sangre , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico por imagen , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Hemólisis/genética , Humanos , Hidroliasas/sangre , Hidroliasas/genética , Lactante , Masculino , Factores de Riesgo , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/fisiopatología , Ultrasonografía Doppler Transcraneal , Talasemia alfa/sangre , Talasemia alfa/diagnóstico por imagen , Talasemia alfa/genética
3.
Methods Mol Biol ; 412: 97-113, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18453108

RESUMEN

Polymorphonuclear neutrophils (PMN) play an essential role in host defense against bacteria and fungi through coordinated responses such as adhesion, migration, phagocytosis, secretion, and activation of the NADPH oxidase. The mitogen-activated protein kinases (MAPKs) and their activation kinase cascades, which transduce signals from the plasma membrane to the cytosol and nucleus, are an integral part of signaling pathways involved in many cellular responses. PMN express several members of the MAPK family that have been shown, mainly through the use of pharmacological inhibitors, to mediate the cellular activities triggered by a variety of extracellular agonists. Methods to determine MAPK activation have been greatly simplified with the availability of antibodies raised to active MAPKs. The recent development of novel inhibitors for the MAPK pathways may further our understanding of their role in neutrophil function.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/análisis , Neutrófilos/enzimología , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida/métodos , Humanos , Inmunoprecipitación/métodos , Isoflurofato/farmacología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neutrófilos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal
4.
Free Radic Biol Med ; 41(1): 86-91, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16781456

RESUMEN

H(2)O(2) produced by stimulation of the macrophage NADPH oxidase is involved both in bacterial killing and as a second messenger in these cells. Protein tyrosine phosphatases (PTPs) are targets for H(2)O(2) signaling through oxidation of their catalytic cysteine, resulting in inhibition of their activity. Here, we show that, in the rat alveolar macrophage NR8383 cell line, H(2)O(2) produced through the ADP-stimulated respiratory burst induces the formation of a disulfide bond between PTP1B and GSH that was detectable with an antibody to glutathione-protein complexes and was reversed by DTT addition. PTP1B glutathionylation was dependent on H(2)O(2) as the presence of catalase at the time of ADP stimulation inhibited the formation of the conjugate. Interestingly, other PTPs, i.e., SHP-1 and SHP-2, did not undergo glutathionylation in response to ADP stimulation of the respiratory burst, although glutathionylation of these proteins could be shown by reaction with 25 mM glutathione disulfide in vitro. While previous studies have suggested the reversible oxidation of PTP1B during signaling or showed PTP1B glutathionylation in vitro, the present study directly demonstrates that physiological stimulation of H(2)O(2) production results in PTP1B glutathionylation in intact cells, which may affect downstream signaling.


Asunto(s)
Adenosina Difosfato/farmacología , Glutatión/metabolismo , Macrófagos Alveolares/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Estallido Respiratorio/efectos de los fármacos , Adenosina Difosfato/metabolismo , Animales , Carmustina/farmacología , Catalasa/metabolismo , Catalasa/farmacología , Línea Celular , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Ratas
5.
Free Radic Res ; 40(8): 865-74, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17015265

RESUMEN

The role of H2O2 as a second messenger in signal transduction pathways is well established. We show here that the NADPH oxidase-dependent production of O2*(-) and H2O2 or respiratory burst in alveolar macrophages (AM) (NR8383 cells) is required for ADP-stimulated c-Jun phosphorylation and the activation of JNK1/2, MKK4 (but not MKK7) and apoptosis signal-regulating kinase-1 (ASK1). ASK1 binds only to the reduced form of thioredoxin (Trx). ADP induced the dissociation of ASK1/Trx complex and thus resulted in ASK1 activation, as assessed by phosphorylation at Thr845, which was enhanced after treatment with aurothioglucose (ATG), an inhibitor of Trx reductase. While dissociation of the complex implies Trx oxidation, protein electrophoretic mobility shift assay detected oxidation of Trx only after bolus H2O2 but not after ADP stimulation. These results demonstrate that the ADP-stimulated respiratory burst activated the ASK1-MKK4-JNK1/c-Jun signaling pathway in AM and suggest that transient and localized oxidation of Trx by the NADPH oxidase-mediated generation of H2O2 may play a critical role in ASK1 activation and the inflammatory response.


Asunto(s)
Adenosina Difosfato/química , MAP Quinasa Quinasa 4/metabolismo , MAP Quinasa Quinasa Quinasa 4/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Macrófagos Alveolares/enzimología , NADPH Oxidasas/química , Adenina/química , Adenosina Difosfato/metabolismo , Animales , Línea Celular , Activación Enzimática , Inflamación , NADPH Oxidasas/metabolismo , Fosforilación , Ratas , Transducción de Señal , Treonina/química
6.
Antioxid Redox Signal ; 7(1-2): 42-59, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15650395

RESUMEN

Changes in the ratio of intracellular reduced and disulfide forms of glutathione (GSH/GSSG) can affect signaling pathways that participate in various physiological responses from cell proliferation to gene expression and apoptosis. It is also now known that many proteins have a highly conserved cysteine (sulfhydryl) sequence in their active/regulatory sites, which are primary targets of oxidative modifications and thus important components of redox signaling. However, the mechanism by which oxidants and GSH/protein-cysteine-thiols actually participate in redox signaling still remains to be elucidated. Initial studies involving the role of cysteine in various proteins have revealed that cysteine-SH may mediate redox signaling via reversible or irreversible oxidative modification to Cys-sulfenate or Cys-sulfinate and Cys-sulfonate species, respectively. Oxidative stress possibly via the modification of cysteine residues activates multiple stress kinase pathways and transcription factors nuclear factor-kappaB and activator protein-1, which differentially regulate the genes for proinflammatory cytokines as well as the protective antioxidant genes. Understanding the redox signaling mechanisms for differential gene regulation may allow for the development of novel pharmacological approaches that preferentially up-regulate key antioxidants genes, which, in turn, reduce or resolve inflammation and injury. This forum article features the current knowledge on the role of GSH in redox signaling, particularly the regulation of transcription factors and downstream signaling in lung inflammation.


Asunto(s)
Regulación de la Expresión Génica , Glutatión/fisiología , Inflamación/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Apoptosis , Sitios de Unión , Proliferación Celular , Cisteína/química , Glutatión/metabolismo , Humanos , Pulmón/patología , Modelos Biológicos , Modelos Químicos , FN-kappa B/metabolismo , Oxidantes/metabolismo , Oxígeno/metabolismo , Transducción de Señal , Factores de Tiempo , Factor de Transcripción AP-1/metabolismo , Regulación hacia Arriba
7.
Front Biosci ; 8: d369-91, 2003 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-12456373

RESUMEN

It has been known for quite some time that proper cellular function requires tight control of the cellular redox state. In recent years, a growing body of literature has provided evidence of a role for reactive oxygen species (ROS) as important mediators of proliferation, acting as second messengers to modulate the activation of various signaling molecules and pathways. In contrast to high levels of ROS that may induce modifications that inhibit the activity of cellular components or result in damage, repair and cell death, the hypothesis that low levels of ROS, produced enzymatically and in a regulated fashion, are required participants of signaling pathways controlling essential cellular function is gaining grounds. The concept that ROS specifically target components of these pathways is only beginning to be examined. The mitogen-activated protein kinases (MAPK) are a large family of proline-directed, serine/threonine kinases that require tyrosine and threonine phosphorylation of a ThrXTyr motif in the activation loop for activation. Receptor-ligand interaction leads to activation of a phosphorylation cascade where the minimal module is formed by MAPK, MAPK kinase and MAPK kinase kinase. Four separate MAPK and activating cascades have been identified, based on the TXY motif and the dual-specificity kinases that strictly phosphorylate their particular TXY sequence. They are the extracellular signal regulated kinases (ERK), c-jun N-terminal kinases (JNK), p38MAPK and ERK5. This review will summarize recent findings regarding the activation of the MAPK and the role played by ROS in their activation.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Animales , Humanos , Oxidación-Reducción
8.
Biofactors ; 17(1-4): 287-96, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12897450

RESUMEN

The mitogen-activated protein (MAP) kinases are a large family of proline-directed, serine/threonine kinases that require tyrosine and threonine phosphorylation of a TxY motif in the activation loop for activation through a phosphorylation cascade involving a MAPKKK, MAPKK and MAPK, often referred to as the MAP kinase module. Three separate such modules have been identified, based on the TxY motif of the MAP kinase and the dual-specificity kinases that strictly phosphorylate their specific TxY sequence. They are the extracellular signal regulated kinases (ERKs), c-jun N-terminal kinases (JNKs) and p38 MAPKs. The ERKs are mainly associated with proliferation and differentiation while the JNKs and p38MAP kinases regulate responses to cellular stresses. Redox homeostasis is critical for proper cellular function. While reactive oxygen species (ROS) and oxidative stress have been implicated in injury, a rapidly growing literature suggests that a transient increase in ROS levels is an important mediator of proliferation and results in activation of various signaling molecules and pathways, among which the MAP kinases. This review will summarize the role of ROS in MAP kinase activation in various systems, including in macrophages, cells of myeloid origin that play an essential role in inflammation and express a multi-component NADPH oxidase that catalyzes the receptor-regulated production of ROS.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oxidación-Reducción , Transducción de Señal , Animales , Activación Enzimática , Humanos , Macrófagos/enzimología , Fosforilación , Especies Reactivas de Oxígeno
11.
Am J Respir Crit Care Med ; 166(12 Pt 2): S4-8, 2002 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-12471082

RESUMEN

Phagocytes such as neutrophils and macrophages produce reactive oxygen species (ROS) during phagocytosis or stimulation with a wide variety of agents through activation of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase that is assembled at the plasma membrane from resident plasma membrane and cytosolic protein components. One of the subunits of the phagocyte NADPH oxidase is now recognized as a member of a family of NADPH oxidases, or NOX, present in cells other than phagocytes. Physiologic generation of ROS has been implicated in a variety of physiologic responses from transcriptional activation to cell proliferation and apoptosis. The increase in superoxide and hydrogen peroxide (H2O2) that results from stimulation of the NADPH oxidase is transient, in part due to the presence of the antioxidant enzymes, which return their concentrations to the prestimulation steady state level. Thus, the antioxidant enzymes may function in the "turn-off" phase of signal transduction by ROS. During its transient elevation, H2O2 may act as a modifier of key signaling enzymes through reversible oxidation of critical thiols. The rapid reaction of thiols with H2O2 when in their unprotonated state would provide a potential mechanism for the specificity that is necessary for physiologic cell signaling.


Asunto(s)
Macrófagos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio/fisiología , Transducción de Señal/fisiología , Humanos , Peróxido de Hidrógeno/metabolismo , Proteínas Quinasas Activadas por Mitógenos/fisiología , Oxidación-Reducción , Proteínas Tirosina Fosfatasas/metabolismo
12.
Am J Physiol Cell Physiol ; 287(2): C246-56, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15238356

RESUMEN

Except for the role of NO in the activation of guanylate cyclase, which is well established, the involvement of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in signal transduction remains controversial, despite a large body of evidence suggestive of their participation in a variety of signaling pathways. Several problems have limited their acceptance as signaling molecules, with the major one being the difficulty in identifying the specific targets for each pathway and the chemical reactions supporting reversible oxidation of these signaling components, consistent with a second messenger role for ROS and RNS. Nevertheless, it has become clear that cysteine residues in the thiolate (i.e., ionized) form that are found in some proteins can be specific targets for reaction with H(2)O(2) and RNS. This review focuses on the chemistry of the reversible oxidation of those thiolates, with a particular emphasis on the critical thiolate found in protein tyrosine phosphatases as an example.


Asunto(s)
Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sistemas de Mensajero Secundario/fisiología , Compuestos de Sulfhidrilo/metabolismo , Animales , Humanos , Oxidación-Reducción
13.
Mol Cell Biochem ; 234-235(1-2): 49-62, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12162460

RESUMEN

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have recently been shown to be involved in a multiplicity of physiological responses through modulation of signaling pathways. Some of the specific signaling components altered by reactive oxygen and nitrogen species (RONS) have begun to be identified. We will discuss RONS signaling by detailing the chemistry of signaling, the roles of antioxidant enzymes as signaling components, thiol chemistry in the specificity of RONS signaling, .NO-heme interactions, and some do's and don'ts of redox signal research. The principal points raised are that: (1) as with classic signaling pathways, signaling by RONS is regulated; (2) antioxidant enzymes are essential 'turn-off components in signaling; (3) spatial relationships are probably more important in RONS signaling than the overall 'redox state' of the cell; (4) deprotonation of cysteines to form the thiolate, which can react with RONS, occurs in specific protein sites providing specificity in signaling; (5) although multiple chemical mechanisms exist for producing nitrosothiols, their formation in vivo remains unclear; and (6) caution should be taken in the use of 'antioxidants' in signal transduction.


Asunto(s)
Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Guanilato Ciclasa/metabolismo , Hemo/metabolismo , Humanos , Oxidación-Reducción , Compuestos de Sulfhidrilo/metabolismo
14.
Biochem Biophys Res Commun ; 303(1): 287-93, 2003 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-12646200

RESUMEN

Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) have taken center stage as bona fide second messengers in various signaling pathways. Here, we report the synthesis, metabolic fate, and effectiveness in modulating such pathways of a Tat-catalase conjugate. Incubation of L2 cells with Tat-catalase greatly increased cell-associated enzymatic activity, reaching close to a plateau by 30 min. The cell-associated catalase activity and antibody-detectable Tat-derivatives declined over time after changing medium, although still remaining at significantly higher levels than baseline even at 4h. While most cell-associated Tat-catalase was apparently tightly attached to the cell surface, a small fraction entered the cells as the proteasome inhibitor MG-132 slightly prevented the disappearance of the enzyme. Tat-catalase, either membrane-bound or intracellular, but not native catalase, inhibited serum-induced Elk phosphorylation and anisomycin- and/or MG-132-induced ERK phosphorylation, suggesting the involvement of H(2)O(2). Thus, Tat-catalase should be a useful tool to dissect H(2)O(2)-dependent events in signaling pathways.


Asunto(s)
Catalasa/metabolismo , Productos del Gen tat/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Animales , Anisomicina/farmacología , Catalasa/química , Línea Celular , Electroforesis en Gel de Poliacrilamida , Productos del Gen tat/química , Cinética , Leupeptinas/farmacología , Pulmón/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Péptidos/química , Fosforilación , Ratas , Proteínas Recombinantes de Fusión/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA