Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biochemistry ; 59(45): 4367-4378, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33141553

RESUMEN

Wild-type transthyretin-associated (ATTRwt) amyloidosis is an age-related disease that causes heart failure in older adults. This disease frequently features cardiac amyloid fibril deposits that originate from dissociation of the tetrameric protein, transthyretin (TTR). Unlike hereditary TTR (ATTRm) amyloidosis, where amino acid replacements destabilize the native protein, in ATTRwt amyloidosis, amyloid-forming TTR lacks protein sequence alterations. The initiating cause of fibril formation in ATTRwt amyloidosis is unclear, and thus, it seems plausible that other factors are involved in TTR misfolding and unregulated accumulation of wild-type TTR fibrils. We believe that clusterin (CLU, UniProtKB P10909), a plasma circulating glycoprotein, plays a role in the pathobiology of ATTRwt amyloidosis. Previously, we have suggested a role for CLU in ATTRwt amyloidosis based on our studies showing that (1) CLU codeposits with non-native TTR in amyloid fibrils from ATTRwt cardiac tissue, (2) CLU interacts only with non-native (monomeric and aggregated) forms of TTR, and (3) CLU serum levels in patients with ATTRwt are significantly lower compared to healthy controls. In the present study, we provide comprehensive detail of compositional findings from mass spectrometry analyses of amino acid and glycan content of CLU purified from ATTRwt and control sera. The characterization of oligosaccharide content in serum CLU derived from patients with ATTRwt amyloidosis is novel data. Moreover, results comparing CLU oligosaccharide variations between patient and healthy controls are original and provide further evidence for the role of CLU in ATTRwt pathobiology, possibly linked to disease-specific structural features that limit the chaperoning capacity of CLU.


Asunto(s)
Amiloidosis/metabolismo , Clusterina/metabolismo , Espectrometría de Masas , Secuencia de Aminoácidos , Amiloidosis/genética , Clusterina/sangre , Clusterina/química , Glicosilación , Humanos
2.
Biophys J ; 114(7): 1579-1589, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642028

RESUMEN

Intramembrane-cleaving proteases (I-CLiPs) activate pools of single-pass helical membrane protein signaling precursors that are key in the physiology of prokaryotic and eukaryotic cells. Proteases typically cleave peptide bonds within extended or flexible regions of their substrates, and thus the mechanism underlying the ability of I-CLiPs to hydrolyze the presumably α-helical transmembrane domain (TMD) of these membrane proteins is unclear. Using deep-ultraviolet resonance Raman spectroscopy in combination with isotopic labeling, we show that although predominantly in canonical α-helical conformation, the TMD of the established I-CLiP substrate Gurken displays 310-helical geometry. As measured by microscale thermophoresis, this substrate binds with high affinity to the I-CLiPs GlpG rhomboid and MCMJR1 presenilin homolog in detergent micelles. Binding results in deep-ultraviolet resonance Raman spectra, indicating conformational changes consistent with unwinding of the 310-helical region of the substrate's TMD. This 310-helical conformation is key for intramembrane proteolysis, as the substitution of a single proline residue in the TMD of Gurken by alanine suppresses 310-helical content in favor of α-helical geometry and abolishes cleavage without affecting binding to the I-CLiP. Complemented by molecular dynamics simulations of the TMD of Gurken, our vibrational spectroscopy data provide biophysical evidence in support of a model in which the transmembrane region of cleavable I-CLiP substrates displays local deviations in canonical α-helical conformation characterized by chain flexibility, and binding to the enzyme results in conformational changes that facilitate local unwinding of the transmembrane helix for cleavage.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteolisis , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Péptido Hidrolasas/metabolismo , Conformación Proteica en Hélice alfa
3.
J Biol Chem ; 286(24): 21440-9, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21454611

RESUMEN

The γ-secretase membrane protein complex is responsible for proteolytic maturation of signaling precursors and catalyzes the final step in the production of the amyloid ß-peptides implicated in the pathogenesis of Alzheimer disease. The incorporation of PEN-2 (presenilin enhancer 2) into a pre-activation intermediate, composed of the catalytic subunit presenilin and the accessory proteins APH-1 (anterior pharynx-defective 1) and nicastrin, triggers the endoproteolysis of presenilin and results in an active tetrameric γ-secretase. We have determined the three-dimensional reconstruction of a mature and catalytically active γ-secretase using single-particle cryo-electron microscopy. γ-Secretase has a cup-like shape with a lateral belt of ∼40-50 Å in height that encloses a water-accessible internal chamber. Active site labeling with a gold-coupled transition state analog inhibitor suggested that the γ-secretase active site faces this chamber. Comparison with the structure of a trimeric pre-activation intermediate suggested that the incorporation of PEN-2 might contribute to the maturation of the active site architecture.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/química , Microscopía Electrónica/métodos , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/química , Catálisis , Dominio Catalítico , Microscopía por Crioelectrón/métodos , Dimerización , Humanos , Proteínas de la Membrana/química , Péptidos/química , Unión Proteica , Conformación Proteica , Transducción de Señal
4.
Stem Cell Reports ; 15(2): 515-528, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32735824

RESUMEN

The systemic amyloidoses are diverse disorders in which misfolded proteins are secreted by effector organs and deposited as proteotoxic aggregates at downstream tissues. Although well described clinically, the contribution of synthesizing organs to amyloid disease pathogenesis is unknown. Here, we utilize hereditary transthyretin amyloidosis (ATTR amyloidosis) induced pluripotent stem cells (iPSCs) to define the contribution of hepatocyte-like cells (HLCs) to the proteotoxicity of secreted transthyretin (TTR). To this end, we generated isogenic, patient-specific iPSCs expressing either amyloidogenic or wild-type TTR. We combined this tool with single-cell RNA sequencing to identify hepatic proteostasis factors correlating with destabilized TTR production in iPSC-derived HLCs. By generating an ATF6 inducible patient-specific iPSC line, we demonstrated that enhancing hepatic ER proteostasis preferentially reduces the secretion of amyloidogenic TTR. These data highlight the liver's capacity to chaperone misfolded TTR prior to deposition, and moreover suggest the potential for unfolded protein response modulating therapeutics in the treatment of diverse systemic amyloidoses.


Asunto(s)
Neuropatías Amiloides Familiares/patología , Amiloide/metabolismo , Células Madre Pluripotentes Inducidas/patología , Hígado/patología , Modelos Biológicos , Prealbúmina/metabolismo , Proteostasis , Factor de Transcripción Activador 6/metabolismo , Neuropatías Amiloides Familiares/genética , Edición Génica , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Mutación/genética , Prealbúmina/genética , Regiones Promotoras Genéticas/genética , Estabilidad Proteica , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual , Estrés Fisiológico , Transferrina/metabolismo , Respuesta de Proteína Desplegada
5.
JAMA Cardiol ; 2(3): 305-313, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28196196

RESUMEN

Importance: Transthyretin cardiac amyloidosis (ATTR) is an underrecognized cause of heart failure (HF) in older individuals, owing in part to difficulty in diagnosis. ATTR can result from substitution of valine for isoleucine at codon 122 of the transthyretin (TTR) gene (V122I), present in 3.43% of African American individuals. Objective: To examine whether serum retinol-binding protein 4 (RBP4), an endogenous TTR ligand, could be used as a diagnostic test for ATTR V122I amyloidosis. Design, Setting, and Participants: In this combined prospective and retrospective cohort study performed at a tertiary care referral center, 50 African American patients 60 years or older with nonamyloid HF and cardiac wall thickening prospectively genotyped from September 1, 2014, through December 31, 2015, and a comparator cohort of 25 patients with biopsy-proven ATTR V122I amyloidosis recruited from September 1, 2009, through November 31, 2014, comprised the development cohort. Twenty-seven African American patients and 9 patients with ATTR V122I amyloidosis comprised the validation cohort. Main Outcomes and Measures: Circulating RBP4, TTR, B-type natriuretic peptide (BNP), and troponin I (TnI) concentrations and electrocardiographic, echocardiographic, and clinical characteristics were assessed in all patients. Receiver operating characteristic (ROC) analysis was performed to identify optimal thresholds for ATTR V122I amyloidosis identification. A clinical prediction rule was developed using penalized logistic regression, evaluated using ROC analysis and validated in an independent cohort of cases and controls. Results: Age, sex, and BNP and TnI concentrations were similar between the 25 patients with ATTR V122I amyloidosis (mean [SD] age, 72.2 [7.4] years; 18 male [72%]) and the 50 controls (mean [SD] age, 69.2 [5.7] years; 31 male [62%]). Serum RBP4 concentration was lower in patients with ATTR V122I amyloidosis compared with nonamyloid controls (31.5 vs 49.4 µg/mL, P < .001), and the difference persisted after controlling for potential confounding variables. Left ventricular ejection fraction was lower in patients with ATTR V122I amyloidosis (mean [SD], 40% [14%] vs 57% [14%], P < .001), whereas interventricular septal diameter was higher (mean [SD], 16 [3] vs 14 [2] mm, P < .001). The ROC analysis identified RBP4 as a sensitive identifier of ATTR V122I amyloidosis (area under the curve [AUC] = 0.78; 95% CI, 0.67-0.88). A clinical prediction algorithm composed of RBP4, TTR, left ventricular ejection fraction, interventricular septal diameter, mean limb lead QRS voltage, and grade 3 diastolic dysfunction yielded excellent discriminatory capacity for ATTR V122I amyloidosis (AUC = 0.97; 95% CI, 0.93-1.00), whereas a 4-parameter model, including RBP4 concentration, retained excellent discrimination (AUC = 0.92; 95% CI, 0.86-0.99). The models maintained excellent discrimination in the validation cohort. Conclusions and Relevance: A prediction model using circulating RBP4 concentration and readily available clinical parameters accurately discriminated ATTR V122I amyloidosis from nonamyloid HF in a case-matched cohort. This clinical algorithm may be useful for identification of ATTR V122I amyloidosis in elderly African American patients with HF.


Asunto(s)
Neuropatías Amiloides Familiares/sangre , Negro o Afroamericano , Cardiomiopatías/sangre , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Anciano , Neuropatías Amiloides Familiares/diagnóstico , Neuropatías Amiloides Familiares/etnología , Biomarcadores/sangre , Biopsia , Cardiomiopatías/diagnóstico , Cardiomiopatías/etnología , Estudios de Casos y Controles , ADN/genética , Análisis Mutacional de ADN , Ecocardiografía , Electrocardiografía , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Massachusetts/epidemiología , Persona de Mediana Edad , Mutación , Miocardio/patología , Prealbúmina/genética , Prealbúmina/metabolismo , Estudios Prospectivos , Curva ROC , Función Ventricular Izquierda
8.
J Mol Biol ; 408(5): 879-95, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21440556

RESUMEN

The deposition of toxic amyloid-ß (Aß) peptide aggregates in the brain is a hallmark of Alzheimer's disease. The intramembrane proteolysis by γ-secretase of the amyloid precursor protein ß-carboxy-terminal fragment (APP-ßCTF) constitutes the final step in the production of Aß peptides. Mounting evidence suggests that APP-ßCTF is a transmembrane domain (TMD) dimer, and that dimerization might modulate the production of Aß species that are prone to aggregation and are therefore most toxic. We combined experimental and computational approaches to study the molecular determinants and thermodynamics of APP-ßCTF dimerization, and we produced a unifying structural model that reconciles much of the published data. Using a cell assay that exploits a dimerization-dependent activator of transcription, we identified specific dimerization-affecting mutations located mostly at the N-terminus of the TMD of APP-ßCTF. The ability of selected mutants to affect the dimerization of full-length APP-ßCTF was confirmed by fluorescence resonance energy transfer experiments. Free-energy estimates of the wild type and mutants of the TMD of APP-ßCTF derived from enhanced molecular dynamics simulations showed that the dimeric state is composed of different arrangements, in which either (709)GXXXA(713) or (700)GXXXG(704)GXXXG(708) interaction motifs can engage in symmetric or asymmetric associations. Mutations along the TMD of APP-ßCTF were found to modulate the relative free energy of the dimeric configurations and to differently affect the distribution of interfaces within the dimeric state. This observation might have important biological implications, since dimers with a different arrangement of the transmembrane helices are likely to be recognized differently by γ-secretase and to lead to a variation in Aß levels.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/química , Termodinámica , Enfermedad de Alzheimer/genética , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Simulación por Computador , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína
9.
PLoS One ; 5(9)2010 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-20927381

RESUMEN

BACKGROUND: The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the γ-secretase multi-protein complex responsible for activating critical signaling cascades during development and for the production of ß-amyloid peptides (Aß) implicated in Alzheimer's disease. The only other known GXGD-type diaspartyl intramembrane proteases are the eukaryotic signal peptide peptidases (SPPs). The presence of presenilin-like enzymes outside eukaryots has not been demonstrated. Here we report the existence of presenilin-like GXGD-type diaspartyl intramembrane proteases in archaea. METHODOLOGY AND PRINCIPAL FINDINGS: We have employed in vitro activity assays to show that MCMJR1, a polytopic membrane protein from the archaeon Methanoculleus marisnigri JR1, is an intramembrane protease bearing the signature YD and GXGD catalytic motifs of presenilin-like enzymes. Mass spectrometry analysis showed MCMJR1 could cleave model intramembrane protease substrates at several sites within their transmembrane region. Remarkably, MCMJR1 could also cleave substrates derived from the ß-amyloid precursor protein (APP) without the need of protein co-factors, as required by presenilin. Two distinct cleavage sites within the transmembrane domain of APP could be identified, one of which coincided with Aß40, the predominant site processed by γ-secretase. Finally, an established presenilin and SPP transition-state analog inhibitor could inhibit MCMJR1. CONCLUSIONS AND SIGNIFICANCE: Our findings suggest that a primitive GXGD-type diaspartyl intramembrane protease from archaea can recapitulate key biochemical properties of eukaryotic presenilins and SPPs. MCMJR1 promises to be a more tractable, simpler system for in depth structural and mechanistic studies of GXGD-type diaspartyl intramembrane proteases.


Asunto(s)
Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Membrana Celular/enzimología , Methanomicrobiaceae/enzimología , Péptido Hidrolasas/metabolismo , Presenilinas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Membrana Celular/química , Membrana Celular/genética , Humanos , Methanomicrobiaceae/química , Methanomicrobiaceae/genética , Datos de Secuencia Molecular , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Presenilinas/química , Presenilinas/genética , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA