Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5162, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056017

RESUMEN

Prebiotic systems chemistry suggests that high phosphate concentrations were necessary to synthesise molecular building blocks and sustain primitive cellular systems. However, current understanding of mineral solubility predicts negligible phosphate concentrations for most natural waters, yet the role of Fe2+, ubiquitous on early Earth, is poorly quantified. Here we determine the solubility of Fe(II)-phosphate in synthetic seawater as a function of pH and ionic strength, integrate these observations into a thermodynamic model that predicts phosphate concentrations across a range of aquatic conditions, and validate these predictions against modern anoxic sediment pore waters. Experiments and models show that Fe2+ significantly increases the solubility of all phosphate minerals in anoxic systems, suggesting that Hadean and Archean seawater featured phosphate concentrations ~103-104 times higher than currently estimated. This suggests that seawater readily met the phosphorus requirements of emergent cellular systems and early microbial life, perhaps fueling primary production during the advent of oxygenic photosynthesis.


Asunto(s)
Origen de la Vida , Fosfatos , Planeta Tierra , Minerales/química , Fosfatos/química , Fósforo/química
2.
Geobiology ; 19(4): 421-433, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33838079

RESUMEN

Microbes are known to accumulate intracellular SiO2 (aq) up to 100s of mmol/l from modern seawater (SiO2 (aq) <100 µmol/l), despite having no known nutrient requirement for Si. Before the evolution of siliceous skeletons, marine silica concentrations were likely an order of magnitude higher than the modern ocean, raising the possibility that intracellular SiO2 (aq) accumulation interfered with normal cellular function in non-silicifying algae. Yet, because few culturing studies have isolated the effects of SiO2 (aq) at high concentration, the potential impact of elevated marine silica on early microbial evolution is unknown. Here, we test the influence of elevated SiO2 (aq) on eukaryotic algae, as well as a prokaryote species. Our results demonstrate that under SiO2 (aq) concentrations relevant to ancient seawater, intracellular Si accumulates to concentrations comparable to those found in siliceous algae such as diatoms. In addition, all eukaryotic algae showed a statistically significant response to the high-Si treatment, including reduced average cell sizes and/or a reduction in the maximum growth rate. In contrast, there was no consistent response to the high-Si treatment by the prokaryote species. Our results highlight the possibility that elevated marine SiO2 (aq) may have been an environmental stressor during early eukaryotic evolution.


Asunto(s)
Diatomeas , Dióxido de Silicio , Eucariontes , Agua de Mar
3.
Interface Focus ; 10(4): 20190137, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32642053

RESUMEN

A hypothesized rise in oxygen levels in the Neoproterozoic, dubbed the Neoproterozoic Oxygenation Event, has been repeatedly linked to the origin and rise of animal life. However, a new body of work has emerged over the past decade that questions this narrative. We explore available proxy records of atmospheric and marine oxygenation and, considering the unique systematics of each geochemical system, attempt to reconcile the data. We also present new results from a comprehensive COPSE biogeochemical model that combines several recent additions, to create a continuous model record from 850 to 250 Ma. We conclude that oxygen levels were intermediate across the Ediacaran and early Palaeozoic, and highly dynamic. Stable, modern-like conditions were not reached until the Late Palaeozoic. We therefore propose that the terms Neoproterozoic Oxygenation Window and Palaeozoic Oxygenation Event are more appropriate descriptors of the rise of oxygen in Earth's atmosphere and oceans.

4.
Nat Geosci ; 12(6): 468-474, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31178922

RESUMEN

The role of oxygen as a driver for early animal evolution is widely debated. During the Cambrian explosion, episodic radiations of major animal phyla occurred coincident with repeated carbon isotope fluctuations. However, the driver of these isotope fluctuations and potential links to environmental oxygenation are unclear. Here, we report high-resolution carbon and sulphur isotope data for marine carbonates from the southeastern Siberian Platform that document the canonical explosive phase of the Cambrian radiation from ~524 to ~514 Myr ago. These analyses demonstrate a strong positive covariation between carbonate δ13C and carbonate-associated sulphate δ34S through five isotope cycles. Biogeochemical modelling suggests that this isotopic coupling reflects periodic oscillations in atmospheric O2 and the extent of shallow ocean oxygenation. Episodic maxima in the biodiversity of animal phyla directly coincided with these extreme oxygen perturbations. Conversely, the subsequent Botoman-Toyonian animal extinction events (~514 to ~512 Myr ago) coincided with decoupled isotope records that suggest a shrinking marine sulphate reservoir and expanded shallow marine anoxia. We suggest that fluctuations in oxygen availability in the shallow marine realm exerted a primary control on the timing and tempo of biodiversity radiations at a crucial phase in the early history of animal life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA