Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta Bioenerg ; 1858(7): 510-518, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28478116

RESUMEN

The function of xanthophylls in the organisation and structure of the photosynthetic complexes is not completely clarified yet. Recently, we observed a reduced level of the photosystem oligomers upon xanthophyll deficiency, although xanthophylls are not considered to be part of the photosynthetic complexes of cyanobacteria. The present study aimed at further investigating the relationship between xanthophylls and photosytem I (PSI) complex in the cyanobacterium Synechocystis sp. PCC 6803. Interestingly, we recorded the presence of echinenone and zeaxanthin in the isolated PSI trimers. These two xanthophyll species are among the most abundant xanthophylls in this cyanobacterial species. Various xanthophyll biosynthesis mutants were used to investigate the specific role of these xanthophylls. Our spectroscopic results revealed specific structural changes manifested in altered pigment-pigment or pigment-protein interactions within PSI complex in the absence of zeaxanthin and echinenone. These structural modifications of the complexes seem to destabilize the PSI trimeric complexes and eventually result in an increased propensity for monomerization. Our results clearly demonstrate that xanthophylls are important for the fine-tuning of the PSI trimer structure. These xanthophylls could be part of the complex or be embedded in the membrane in the vicinity of PSI.


Asunto(s)
Proteínas Bacterianas/química , Carotenoides/fisiología , Complejo de Proteína del Fotosistema I/química , Synechocystis/metabolismo , Zeaxantinas/fisiología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Centrifugación por Gradiente de Densidad , Dicroismo Circular , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Complejo de Proteína del Fotosistema I/metabolismo , Pigmentos Biológicos/análisis , Unión Proteica , Multimerización de Proteína , Espectrometría de Fluorescencia , Tilacoides/química , beta Caroteno/análisis
2.
Biochim Biophys Acta ; 1857(9): 1479-1489, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27154055

RESUMEN

Macro-organisation of the protein complexes in plant thylakoid membranes plays important roles in the regulation and fine-tuning of photosynthetic activity. These delicate structures might, however, undergo substantial changes during isolating the thylakoid membranes or during sample preparations, e.g., for electron microscopy. Circular-dichroism (CD) spectroscopy is a non-invasive technique which can thus be used on intact samples. Via excitonic and psi-type CD bands, respectively, it carries information on short-range excitonic pigment-pigment interactions and the macro-organisation (chiral macrodomains) of pigment-protein complexes (psi, polymer or salt-induced). In order to obtain more specific information on the origin of the major psi-type CD bands, at around (+)506, (-)674 and (+)690nm, we fingerprinted detached leaves and isolated thylakoid membranes of wild-type and mutant plants and also tested the effects of different environmental conditions in vivo. We show that (i) the chiral macrodomains disassemble upon mild detergent treatments, but not after crosslinking the protein complexes; (ii) in different wild-type leaves of dicotyledonous and monocotyledonous angiosperms the CD features are quite robust, displaying very similar excitonic and psi-type bands, suggesting similar protein composition and (macro-) organisation of photosystem II (PSII) supercomplexes in the grana; (iii) the main positive psi-type bands depend on light-harvesting protein II contents of the membranes; (iv) the (+)506nm band appears only in the presence of PSII-LHCII supercomplexes and does not depend on the xanthophyll composition of the membranes. Hence, CD spectroscopy can be used to detect different macro-domains in the thylakoid membranes with different outer antenna compositions in vivo.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/química , Tilacoides/química , Cloroplastos/ultraestructura , Dicroismo Circular , Hojas de la Planta/química , Xantófilas/química
3.
Biochim Biophys Acta ; 1847(10): 1153-65, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26045333

RESUMEN

In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of photosynthetic complexes in wild-type and various mutant strains of the cyanobacterium Synechocystis sp. PCC 6803. Although it is generally accepted that xanthophylls do not play a role in cyanobacterial photosynthesis in low-light conditions, we have found that the absence of xanthophylls leads to reduced oligomerization of photosystems I and II. This is remarkable because these complexes do not bind xanthophylls. Oligomerization is even more disturbed in crtH mutant cells, which show limited carotenoid synthesis; in these cells also the phycobilisomes are distorted despite the fact that these extramembranous light-harvesting complexes do not contain carotenoids. The number of phycocyanin rods connected to the phycobilisome core is strongly reduced leading to high amounts of unattached phycocyanin units. In the absence of carotenoids the overall organization of the thylakoid membranes is disturbed: Photosystem II is not formed, photosystem I hardly oligomerizes and the assembly of phycobilisomes remains incomplete. These data underline the importance of carotenoids in the structural and functional organization of the cyanobacterial photosynthetic machinery.

4.
Photosynth Res ; 130(1-3): 403-415, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27165097

RESUMEN

We investigated the relation between the carotenoid composition and the structure of phycobilisome (PBS) antenna of cyanobacterium Synechocystis sp. PCC 6803. PBS is a large soluble protein complex enhances the light harvesting efficiency of the cells. It is composed of a central allophycocyanin core and radial phycocyanin rods, but it does not contain carotenoids. However, the absence or low level of carotenoids were previously shown to lead the co-existence of unconnected rod units and assembled PBS with shorter peripheral rods. Here we show that the lack of ß-carotene, but not of xanthophylls or the distortion of photosystem structure, evoked unconnected rods. Thus, these essential ß-carotene molecules are not bound by Photosystem I or Photosystem II. Our results do not show correlation between the reactive oxygen species (ROS) and PBS distortion despite the higher singlet oxygen producing capacity and light sensitivity of the mutant cells. Reduced cellular level of those linker proteins attaching the rod units together was also observed, but the direct damage of the linkers by ROS are not supported by our data. Enzymatic PBS proteolysis induced by nitrogen starvation in carotenoid mutant cells revealed a retarded degradation of the unconnected rod units.


Asunto(s)
Complejos de Proteína Captadores de Luz/efectos de los fármacos , Ficobilisomas/efectos de los fármacos , Synechocystis/efectos de los fármacos , beta Caroteno/farmacología , Glucosa/metabolismo , Luz , Complejos de Proteína Captadores de Luz/fisiología , Nitrógeno/metabolismo , Fotosíntesis/efectos de los fármacos , Ficobilisomas/aislamiento & purificación , Ficobilisomas/fisiología , Espectrometría de Fluorescencia , Synechocystis/fisiología
5.
Bioresour Technol ; 394: 130206, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122998

RESUMEN

Biophotovoltaic (BPV) devices are a potential decentralized and environmentally friendly energy source that harness solar energy through photosynthesis. BPV devices are self-regenerating, promising long-term usability. A practical strategy for enhancing BPV performance is to systematically screen for highly exoelectrogenic algal strains capable of generating large electric current density. In this study, a previously uncharacterized green algal strain - Parachlorella kessleri MACC-38 was found to generate over 340 µA mg-1 Chl cm-2. This output is approximately ten-fold higher than those of Chlamydomonas reinhardtii and Chlorella species. The current production of MACC-38 primarily originates from photosynthesis, and the strain maintains its physiological integrity throughout the process. MACC-38 exhibits unique traits such as low extracellular O2 and Fe(III) reduction, substantial copper (II) reduction, and significant extracellular acidification during current generation, contributing to its high productivity. The exoelectrogenic and growth characteristics of MACC-38 suggest that it could markedly boost BPV efficiency.


Asunto(s)
Chlamydomonas reinhardtii , Chlorella , Compuestos Férricos , Fotosíntesis
6.
ACS Biomater Sci Eng ; 9(10): 5700-5708, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37756260

RESUMEN

In recent years, extensive scientific efforts have been conducted to develop clean bioenergy technologies. A promising approach that has been under development for more than a hundred years is the microbial fuel cell (MFC) which utilizes exoelectrogenic bacteria as an electron source in a bioelectrochemical cell. The viability of bacteria in soil MFCs can be maintained by integrating plant roots, which release organic materials that feed the bacteria. In this work, we show that rather than organic compounds, roots also release redox species that can produce electricity in a biofuel cell. We first studied the reduction of the electron acceptor Cytochrome C by green onion roots. We integrate green onion roots into a biofuel cell to produce a continuous bias-free electric current for more than 24 h in the dark. This current is enhanced upon irradiation of the onion's leaves with light. We apply cyclic voltammetry and 2D-fluorescence measurements to show that NADH and NADPH act as major electron mediators between the roots and the anode, while their concentrations in the external root matrix are increased upon irradiation of the leaves. Finally, we show that roots can contribute to energy storage by charging a supercapacitor.

7.
Biosens Bioelectron ; 198: 113824, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34864244

RESUMEN

The conversion of solar energy into electrical current by photosynthetic organisms has the potential to produce clean energy. Bio-photoelectrochemical cells (BPECs) utilizing unicellular photosynthetic microorganisms have been studied, however similar harvesting of electrons from more evolved intact photosynthetic organisms has not been previously reported. In this study, we describe for the first time BPECs containing intact live marine macroalgae (seaweeds) in natural seawater or saline buffer. The BPECs produce electrical currents of >50 mA/cm2, from both light-dependent (photosynthesis) and light-independent processes. These values are significantly greater than the current densities that have been reported for single-cell microorganisms. The photocurrent is inhibited by the Photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, indicating that the source of light-driven electrons is from photosynthetic water oxidation. The current is mediated to the external anode via NADPH and possibly other reduced molecules. We show that intact macroalgae cultures can be used in large-scale BPECs containing seawater, to produce bias-free photocurrents, paving the way for the future development of low-cost energy solar energy conversion technologies using BPECs.


Asunto(s)
Técnicas Biosensibles , Algas Marinas , Energía Solar , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Algas Marinas/metabolismo
8.
iScience ; 24(1): 101892, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33364581

RESUMEN

Previous studies have shown that live cyanobacteria can produce photocurrent in bio-photoelectrochemical cells (BPECs) that can be exploited for clean renewable energy production. Electron transfer from cyanobacteria to the electrochemical cell was proposed to be facilitated by small molecule(s) mediator(s) whose identity (or identities) remain unknown. Here, we elucidate the mechanism of electron transfer in the BPEC by identifying the major electron mediator as NADPH in three cyanobacterial species. We show that an increase in the concentration of NADPH secreted into the external cell medium (ECM) is obtained by both illumination and activation of the BPEC. Elimination of NADPH in the ECM abrogates the photocurrent while addition of exogenous NADP+ significantly increases and prolongs the photocurrent production. NADP+ is thus the first non-toxic, water soluble electron mediator that can functionally link photosynthetic cells to an energy conversion system and may serve to improve the performance of future BPECs.

9.
Nat Commun ; 9(1): 2168, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29867170

RESUMEN

Oxygenic photosynthetic organisms perform solar energy conversion of water and CO2 to O2 and sugar at a broad range of wavelengths and light intensities. These cells also metabolize sugars using a respiratory system that functionally overlaps the photosynthetic apparatus. In this study, we describe the harvesting of photocurrent used for hydrogen production from live cyanobacteria. A non-harmful gentle physical treatment of the cyanobacterial cells enables light-driven electron transfer by an endogenous mediator to a graphite electrode in a bio-photoelectrochemical cell, without the addition of sacrificial electron donors or acceptors. We show that the photocurrent is derived from photosystem I and that the electrons originate from carbohydrates digested by the respiratory system. Finally, the current is utilized for hydrogen evolution on the cathode at a bias of 0.65 V. Taken together, we present a bio-photoelectrochemical system where live cyanobacteria produce stable photocurrent that can generate hydrogen.


Asunto(s)
Cianobacterias/metabolismo , Hidrógeno/metabolismo , Luz , Consumo de Oxígeno/efectos de la radiación , Fotosíntesis/efectos de la radiación , Proteínas Bacterianas/metabolismo , Cianobacterias/ultraestructura , Transporte de Electrón/efectos de la radiación , Microscopía Electrónica de Rastreo , Complejo de Proteína del Fotosistema I/metabolismo , Synechocystis/metabolismo , Synechocystis/ultraestructura
10.
Front Plant Sci ; 7: 295, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014318

RESUMEN

Carotenoids (carotenes and xanthophylls) are ubiquitous constituents of living organisms. They are protective agents against oxidative stresses and serve as modulators of membrane microviscosity. As antioxidants they can protect photosynthetic organisms from free radicals like reactive oxygen species that originate from water splitting, the first step of photosynthesis. We summarize the structural and functional roles of carotenoids in connection with cyanobacterial Photosystem II. Although carotenoids are hydrophobic molecules, their complexes with proteins also allow cytoplasmic localization. In cyanobacterial cells such complexes are called orange carotenoid proteins, and they protect Photosystem II and Photosystem I by preventing their overexcitation through phycobilisomes (PBS). Recently it has been observed that carotenoids are not only required for the proper functioning, but also for the structural stability of PBSs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA