Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Entomol ; 52(3): 416-425, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37170880

RESUMEN

Sustainable production of pumpkin (Cucurbita maxima Duchesne) partly relies on integrated pest management (IPM) and pollination services. A farmer-managed field study was carried out in Yatta and Masinga Sub-Counties of Machakos County, Kenya, to determine the effectiveness of a recommended IPM package and its interaction with stingless bee colonies (Hypotrigona sp.) for pollinator supplementation (PS). The IPM package comprised Lynfield traps with cuelure laced with the organophosphate malathion, sprays of Metarhizium anisopliae (Mechnikoff) Sorokin isolate ICIPE 69, the most widely used fungal biopesticide in sub-Saharan Africa, and protein baits incorporating spinosad. Four treatments-IPM, PS, integrated pest and pollinator management (which combined IPM and PS), and control-were replicated 4 times. The experiment was conducted in 600 m2 farms in 2 normalized difference vegetation index (NDVI) classes during 2 growing seasons (October 2019-March 2020 and March-July 2020). Fruits showing signs of infestation were incubated for emergence, fruit fly trap catches were counted weekly, and physiologically mature fruits were harvested. There was no effect of IPM, PS, and NDVI on yield across seasons. This study revealed no synergistic effect between IPM and PS in suppressing Tephritid fruit fly population densities and damage. Hypotrigona sp. is not an efficient pollinator of pumpkin. Therefore, we recommend testing other African stingless bees in pumpkin production systems for better pollination services and improved yields.


Asunto(s)
Cucurbita , Cucurbitaceae , Abejas , Animales , Kenia , Control de Plagas , Polinización/fisiología , Suplementos Dietéticos
2.
Insects ; 11(7)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659943

RESUMEN

Avocado (Persea americana Mill.) production contributes to the economic growth of East Africa. However, poor fruit quality caused by infestations of tephritid fruit flies (Tephritidae) and the false codling moth, Thaumatotibia leucotreta (Meyrick), hampers access to lucrative export markets. Remote sensing and spatial analysis are increasingly applied to crop pest studies to develop sustainable and cost-effective control strategies. In this study, we assessed pest abundance in Muranga, Kenya, across three vegetation productivity classes, viz., low, medium and high, which were estimated using the normalised difference vegetation index at a landscape scale. Population densities of the oriental fruit fly, Bactrocera dorsalis (Hendel) and T. leucotreta in avocado farms were estimated through specific baited traps and fruit rearing. The population density of T. leucotreta varied across the vegetation productivity classes throughout the study period, although not significantly. Meanwhile, B. dorsalis showed a clear trend of decrease over time and was significantly lower in high vegetation productivity class compared to low and medium classes. Ceratitis cosyra (Walker) was the most abundant pest reared from fruit with few associated parasitoids, Pachycrepoideus vindemmiae (Rondani) and Toxeumorpha nigricola (Ferriere).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA