RESUMEN
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine (polyQ)-encoding CAG repeat in the ATXN3 gene. Because the ATXN3 protein regulates photoreceptor ciliogenesis and phagocytosis, we aimed to explore whether expanded polyQ ATXN3 impacts retinal function and integrity in SCA3 patients and transgenic mice. We evaluated the retinal structure and function in five patients with SCA3 and in a transgenic mouse model of this disease (YACMJD84.2, Q84) using optical coherence tomography (OCT) and electroretinogram (ERG). In the transgenic mice, we further: a) determined the retinal expression pattern of ATXN3 and the distribution of cones and rods using immunofluorescence (IF); and b) assessed the retinal ultrastructure using transmission electron microscopy (TEM). Some patients with SCA3 in our cohort revealed: i) reduced central macular thickness indirectly correlated with disease duration; ii) decreased thickness of the macula and the ganglion cell layer, and reduced macula volume inversely correlated with disease severity (SARA score); and iii) electrophysiological dysfunction of cones, rods, and inner retinal cells. Transgenic mice replicated the human OCT and ERG findings with aged homozygous Q84/Q84 mice showing a stronger phenotype accompanied by further thinning of the outer nuclear layer and photoreceptor layer and highly reduced cone and rod activities, thus supporting severe retinal dysfunction in these mice. In addition, Q84 mice showed progressive accumulation of ATXN3-positive aggregates throughout several retinal layers and depletion of cones alongside the disease course. TEM analysis of aged Q84/Q84 mouse retinas supported the ATXN3 aggregation findings by revealing the presence of high number of negative electron dense puncta in ganglion cells, inner plexiform and inner nuclear layers, and showed further thinning of the outer plexiform layer, thickening of the retinal pigment epithelium and elongation of apical microvilli. Our results indicate that retinal alterations detected by non-invasive eye examination using OCT and ERG could represent a biological marker of disease progression and severity in patients with SCA3.
Asunto(s)
Enfermedad de Machado-Joseph , Anciano , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Modelos Animales de Enfermedad , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Ratones , Ratones Transgénicos , Retina/metabolismoRESUMEN
Inherited retinal disorders (IRDs) affect millions of people worldwide and are a major cause of irreversible blindness. Therapies based on drugs, gene augmentation or transplantation approaches have been widely investigated and proposed. Among gene therapies for retinal degenerative diseases, the fast-evolving genome-editing CRISPR/Cas technology has emerged as a new potential treatment. The CRISPR/Cas system has been developed as a powerful genome-editing tool in ophthalmic studies and has been applied not only to gain proof of principle for gene therapies in vivo, but has also been extensively used in basic research to model diseases-in-a-dish. Indeed, the CRISPR/Cas technology has been exploited to genetically modify human induced pluripotent stem cells (iPSCs) to model retinal disorders in vitro, to test in vitro drugs and therapies and to provide a cell source for autologous transplantation. In this review, we will focus on the technological advances in iPSC-based cellular reprogramming and gene editing technologies to create human in vitro models that accurately recapitulate IRD mechanisms towards the development of treatments for retinal degenerative diseases.
Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Humanos , Edición Génica , Sistemas CRISPR-Cas/genética , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Terapia GenéticaRESUMEN
Primary cilia are microtubule-based sensory organelles that are involved in the organization of numerous key signals during development and in differentiated tissue homeostasis. In fact, the formation and resorption of cilia highly depends on the cell cycle phase in replicative cells, and the ubiquitin proteasome pathway (UPS) proteins, such as E3 ligases and deubiquitinating enzymes, promote microtubule assembly and disassembly by regulating the degradation/availability of ciliary regulatory proteins. Also, many differentiated tissues display cilia, and mutations in genes encoding ciliary proteins are associated with several human pathologies, named ciliopathies, which are multi-organ rare diseases. The retina is one of the organs most affected by ciliary gene mutations because photoreceptors are ciliated cells. Photoreception and phototransduction occur in the outer segment, a highly specialized neurosensory cilium. In this review, we focus on the function of UPS proteins in ciliogenesis and cilia length control in replicative cells and compare it with the scanty data on the identified UPS genes that cause syndromic and non-syndromic inherited retinal disorders. Clearly, further work using animal models and gene-edited mutants of ciliary genes in cells and organoids will widen the landscape of UPS involvement in ciliogenesis and cilia homeostasis.
Asunto(s)
Cilios/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Retina/citología , Retina/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Células Fotorreceptoras/citología , Células Fotorreceptoras/metabolismoRESUMEN
Purpose: Genes involved in the development and differentiation of the mammalian retina are also associated with inherited retinal dystrophies (IRDs) and age-related macular degeneration. Transcriptional regulation of retinal cell differentiation has been addressed by genetic and transcriptomic studies. Much less is known about the posttranslational regulation of key regulatory proteins, although mutations in some genes involved in ubiquitination and proteostasis-E3 ligases and deubiquitinating enzymes (DUBs)-cause IRDs. This study intends to provide new data on DUB gene expression during different developmental stages of mouse and human fetal retinas. Methods: We performed a comprehensive transcriptomic analysis of all the annotated human and mouse DUBs (87) in the developing mouse retina at several embryonic and postnatal time points compared with the transcriptome of the fetal human retina. An integrated comparison of data from transcriptomics, reported chromatin immunoprecipitation sequencing (ChIP-seq) of CRX and NRL transcription factors, and the phenotypic retinal alterations in different animal models is presented. Results: Several DUB genes are differentially expressed during the development of the mouse and human retinas in relation to proliferation or differentiation stages. Some DUB genes appear to be distinctly expressed during the differentiation stages of rod and cone photoreceptor cells, and their expression is altered in mouse knockout models of relevant photoreceptor transcription factors. We complemented this RNA-sequencing (RNA-seq) analysis with other reported expression and phenotypic data to underscore the involvement of DUBs in cell fate decision and photoreceptor differentiation. Conclusions: The present results highlight a short list of potential DUB candidates for retinal disorders, which require further study.
Asunto(s)
Enzimas Desubicuitinizantes/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Mamíferos/embriología , Mamíferos/genética , Retina/embriología , Retina/enzimología , Animales , Enzimas Desubicuitinizantes/metabolismo , Feto/metabolismo , Humanos , Ratones , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/metabolismo , Transcriptoma/genéticaRESUMEN
Ciliopathies are a group of heterogeneous inherited disorders associated with dysfunction of the cilium, a ubiquitous microtubule-based organelle involved in a broad range of cellular functions. Most ciliopathies are syndromic, since several organs whose cells produce a cilium, such as the retina, cochlea or kidney, are affected by mutations in ciliary-related genes. In the retina, photoreceptor cells present a highly specialized neurosensory cilium, the outer segment, stacked with membranous disks where photoreception and phototransduction occurs. The daily renewal of the more distal disks is a unique characteristic of photoreceptor outer segments, resulting in an elevated protein demand. All components necessary for outer segment formation, maintenance and function have to be transported from the photoreceptor inner segment, where synthesis occurs, to the cilium. Therefore, efficient transport of selected proteins is critical for photoreceptor ciliogenesis and function, and any alteration in either cargo delivery to the cilium or intraciliary trafficking compromises photoreceptor survival and leads to retinal degeneration. To date, mutations in more than 100 ciliary genes have been associated with retinal dystrophies, accounting for almost 25% of these inherited rare diseases. Interestingly, not all mutations in ciliary genes that cause retinal degeneration are also involved in pleiotropic pathologies in other ciliated organs. Depending on the mutation, the same gene can cause syndromic or non-syndromic retinopathies, thus emphasizing the highly refined specialization of the photoreceptor neurosensory cilia, and raising the possibility of photoreceptor-specific molecular mechanisms underlying common ciliary functions such as ciliary transport. In this review, we will focus on ciliary transport in photoreceptor cells and discuss the molecular complexity underpinning retinal ciliopathies, with a special emphasis on ciliary genes that, when mutated, cause either syndromic or non-syndromic retinal ciliopathies.
RESUMEN
Expansion of a CAG repeat in ATXN3 causes the dominant polyglutamine disease spinocerebellar ataxia type 3 (SCA3), yet the physiological role of ATXN3 remains unclear. Here, we focus on unveiling the function of Ataxin-3 (ATXN3) in the retina, a neurological organ amenable to morphological and physiological studies. Depletion of Atxn3 in zebrafish and mice causes morphological and functional retinal alterations and, more precisely, photoreceptor cilium and outer segment elongation, cone opsin mislocalization, and cone hyperexcitation. ATXN3 localizes at the basal body and axoneme of the cilium, supporting its role in regulating ciliary length. Abrogation of Atxn3 expression causes decreased levels of the regulatory protein KEAP1 in the retina and delayed phagosome maturation in the retinal pigment epithelium. We propose that ATXN3 regulates two relevant biological processes in the retina, namely, ciliogenesis and phagocytosis, by modulating microtubule polymerization and microtubule-dependent retrograde transport, thus positing ATXN3 as a causative or modifier gene in retinal/macular dystrophies.
Asunto(s)
Ataxina-3/metabolismo , Cilios/metabolismo , Retina/metabolismo , Animales , Cilios/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Fagocitosis/fisiología , Transfección , Pez CebraRESUMEN
AIMS: We aimed to validate the pathogenicity of genetic variants identified in inherited retinal dystrophy (IRD) patients, which were located in non-canonical splice sites (NCSS). METHODS: After next generation sequencing (NGS) analysis (target gene panels or whole exome sequencing (WES)), NCSS variants were prioritized according to in silico predictions. In vivo and in vitro functional tests were used to validate their pathogenicity. RESULTS: Four novel NCSS variants have been identified. They are located in intron 33 and 34 of ABCA4 (c.4774-9G>A and c.4849-8C>G, respectively), intron 2 of POC1B (c.101-3T>G) and intron 3 of RP2 (c.884-14G>A). Functional analysis detected different aberrant splicing events, including intron retention, exon skipping and intronic nucleotide addition, whose molecular effect was either the disruption or the elongation of the open reading frame of the corresponding gene. CONCLUSIONS: Our data increase the genetic diagnostic yield of IRD patients and expand the landscape of pathogenic variants, which will have an impact on the genotype-phenotype correlations and allow patients to opt for the emerging gene and cell therapies.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al GTP/genética , Proteínas de la Membrana/genética , Mutación , Empalme del ARN/genética , Distrofias Retinianas/diagnóstico , Adulto , Niño , Femenino , Humanos , Masculino , Distrofias Retinianas/genética , Secuenciación del Exoma , Adulto JovenRESUMEN
Many rare diseases course with affectation of neurosensory organs. Among them, the neuroepithelial retina is very vulnerable due to constant light/oxidative stress, but it is also the most accessible and amenable to gene manipulation. Currently, gene addition therapies targeting retinal tissue (either photoreceptors or the retinal pigment epithelium), as a therapy for inherited retinal dystrophies, use adeno-associated virus (AAV)-based approaches. However, efficiency and safety of therapeutic strategies are relevant issues that are not always resolved in virus-based gene delivery and alternative methodologies should be explored. Based on our experience, we are currently assessing the novel physical properties at the nanoscale of inorganic gold nanoparticles for delivering genes to the retinal pigment epithelium (RPE) as a safe and efficient alternative approach. In this work, we present our preliminary results using DNA-wrapped gold nanoparticles (DNA-gold NPs) for successful in vitro gene delivery on human retinal pigment epithelium cell cultures, as a proof-of-principle to assess its feasibility for retina in vivo gene delivery. Our results show faster expression of a reporter gene in cells transfected with DNA-gold NPs compared to DNA-liposome complexes. Furthermore, we show that the DNA-gold NPs follow different uptake, internalization and intracellular vesicle trafficking routes compared to pristine NPs.
Asunto(s)
ADN/farmacología , Técnicas de Transferencia de Gen , Nanopartículas del Metal/química , Epitelio Pigmentado de la Retina/metabolismo , ADN/química , ADN/genética , Dependovirus/genética , Terapia Genética , Oro/química , Humanos , Liposomas/química , Liposomas/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/metabolismo , Plásmidos/genética , Plásmidos/uso terapéutico , Retina/metabolismo , Retina/patología , Epitelio Pigmentado de la Retina/patología , TransfecciónRESUMEN
RPGeNet offers researchers a user-friendly queriable tool to visualize the interactome network of visual disorder genes, thus enabling the identification of new potential causative genes and the assignment of novel candidates to specific retinal or cellular pathways. This can be highly relevant for clinical applications as retinal dystrophies affect 1:3000 people worldwide, and the causative genes are still unknown for 30% of the patients. RPGeNet is a refined interaction network interface that limits its skeleton network to the shortest paths between each and every known causative gene of inherited syndromic and non-syndromic retinal dystrophies. RPGeNet integrates interaction information from STRING, BioGRID and PPaxe, along with retina-specific expression data and associated genetic variants, over a Cytoscape.js web interface. For the new version, RPGeNet v2.0, the database engine was migrated to Neo4j graph database manager, which speeds up the initial queries and can handle whole interactome data for new ways to query the network. Further, user facilities have been introduced as the capability of saving and restoring a researcher customized network layout or as novel features to facilitate navigation and data projection on the network explorer interface. Responsiveness has been further improved by transferring some functionality to the client side.
Asunto(s)
Bases de Datos Genéticas , Epistasis Genética , Enfermedades de la Retina , Programas Informáticos , Interfaz Usuario-Computador , Humanos , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismoRESUMEN
Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their functional role in the development and maintenance of organs and tissues in the organism. In fact, several ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders, from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways cause retinal dystrophies, a group of rare diseases that affect 1:3000 individuals worldwide. We propose zebrafish as an extremely useful and informative genetic model to characterize the function of any particular gene in the retina, and thus complement the expression data from mouse. A preliminary characterization of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept, we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal structures, therefore supporting the relevance of DUBs in the formation and differentiation of the vertebrate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for causing hereditary retinal dystrophies.
Asunto(s)
Retina/enzimología , Retina/metabolismo , Animales , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Embrión no Mamífero/enzimología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Ratones , Retina/crecimiento & desarrollo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Ubiquitination is a relevant cell regulatory mechanism to determine protein fate and function. Most data has focused on the role of ubiquitin as a tag molecule to target substrates to proteasome degradation, and on its impact in the control of cell cycle, protein homeostasis and cancer. Only recently, systematic assays have pointed to the relevance of the ubiquitin pathway in the development and differentiation of tissues and organs, and its implication in hereditary diseases. Moreover, although the activity and composition of ubiquitin ligases has been largely addressed, the role of the deubiquitinating enzymes (DUBs) in specific tissues, such as the retina, remains mainly unknown. In this work, we undertook a systematic analysis of the transcriptional levels of DUB genes in the adult mouse retina by RT-qPCR and analyzed the expression pattern by in situ hybridization and fluorescent immunohistochemistry, thus providing a unique spatial reference map of retinal DUB expression. We also performed a systematic phylogenetic analysis to understand the origin and the presence/absence of DUB genes in the genomes of diverse animal taxa that represent most of the known animal diversity. The expression landscape obtained supports the potential subfunctionalization of paralogs in those families that expanded in vertebrates. Overall, our results constitute a reference framework for further characterization of the DUB roles in the retina and suggest new candidates for inherited retinal disorders.