Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Anal Chem ; 95(2): 703-713, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36599091

RESUMEN

With synthetic cannabinoid receptor agonist (SCRA) use still prevalent across Europe and structurally advanced generations emerging, it is imperative that drug detection methods advance in parallel. SCRAs are a chemically diverse and evolving group, which makes rapid detection challenging. We have previously shown that fluorescence spectral fingerprinting (FSF) has the potential to provide rapid assessment of SCRA presence directly from street material with minimal processing and in saliva. Enhancing the sensitivity and discriminatory ability of this approach has high potential to accelerate the delivery of a point-of-care technology that can be used confidently by a range of stakeholders, from medical to prison staff. We demonstrate that a range of structurally distinct SCRAs are photochemically active and give rise to distinct FSFs after irradiation. To explore this in detail, we have synthesized a model series of compounds which mimic specific structural features of AM-694. Our data show that FSFs are sensitive to chemically conservative changes, with evidence that this relates to shifts in the electronic structure and cross-conjugation. Crucially, we find that the photochemical degradation rate is sensitive to individual structures and gives rise to a specific major product, the mechanism and identification of which we elucidate through density-functional theory (DFT) and time-dependent DFT. We test the potential of our hybrid "photochemical fingerprinting" approach to discriminate SCRAs by demonstrating SCRA detection from a simulated smoking apparatus in saliva. Our study shows the potential of tracking photochemical reactivity via FSFs for enhanced discrimination of SCRAs, with successful integration into a portable device.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Drogas Ilícitas , Humanos , Agonistas de Receptores de Cannabinoides/química , Sistemas de Atención de Punto , Detección de Abuso de Sustancias/métodos
2.
J Org Chem ; 87(9): 5703-5712, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35476461

RESUMEN

Here, we compare the relative performances of different force fields for conformational searching of hydrogen-bond-donating catalyst-like molecules. We assess the force fields by their predictions of conformer energies, geometries, low-energy, nonredundant conformers, and the maximum numbers of possible conformers. Overall, MM3, MMFFs, and OPLS3e had consistently strong performances and are recommended for conformationally searching molecules structurally similar to those in this study.


Asunto(s)
Hidrógeno , Enlace de Hidrógeno , Conformación Molecular
3.
Chem Res Toxicol ; 34(2): 179-188, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-32643924

RESUMEN

As a field, computational toxicology is concerned with using in silico models to predict and understand the origins of toxicity. It is fast, relatively inexpensive, and avoids the ethical conundrum of using animals in scientific experimentation. In this perspective, we discuss the importance of computational models in toxicology, with a specific focus on the different model types that can be used in predictive toxicological approaches toward mutagenicity (SARs and QSARs). We then focus on how quantum chemical methods, such as density functional theory (DFT), have previously been used in the prediction of mutagenicity. It is then discussed how DFT allows for the development of new chemical descriptors that focus on capturing the steric and energetic effects that influence toxicological reactions. We hope to demonstrate the role that DFT plays in understanding the fundamental, intrinsic chemistry of toxicological reactions in predictive toxicology.


Asunto(s)
Teoría Funcional de la Densidad , Pruebas de Mutagenicidad , Pruebas de Toxicidad , Animales , Relación Estructura-Actividad Cuantitativa
4.
J Chem Inf Model ; 59(12): 5099-5103, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31774671

RESUMEN

Assessing the safety of new chemicals, without introducing the need for animal testing, is a task of great importance. The Ames test, a widely used bioassay to assess mutagenicity, can be an expensive, wasteful process with animal-derived reagents. Existing in silico methods for the prediction of Ames test results are traditionally based on chemical category formation and can lead to false positive predictions. Category formation also neglects the intrinsic chemistry associated with DNA reactivity. Activation energies and HOMO/LUMO energies for thirty 1,4 Michael acceptors were calculated using a model nucleobase and were further used to predict the Ames test result of these compounds. The proposed model builds upon existing work and examines the fundamental toxicant-target interactions using density functional theory transition-state modeling. The results show that Michael acceptors with activation energies <20.7 kcal/mol and LUMO energies < -1.85 eV are likely to act as direct mutagens upon exposure to DNA.


Asunto(s)
Teoría Funcional de la Densidad , Pruebas de Mutagenicidad , Mutágenos/química , Guanina/metabolismo , Mutágenos/toxicidad , Termodinámica
5.
ACS Omega ; 9(5): 5142-5156, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343963

RESUMEN

The presence of microscopic fine plastic particles (FPPs) in aquatic environments continues to be a societal issue of great concern. Further, the adsorption of pollutants and other macromolecules onto the surface of FPPs is a well-known phenomenon. To establish the adsorption behavior of pollutants and the adsorption capacity of different plastic materials, batch adsorption experiments are typically carried out, wherein known concentrations of a pollutant are added to a known amount of plastic. These experiments can be time-consuming and wasteful by design, and in this work, an alternative theoretical approach to considering the problem is reviewed. As a theoretical tool, molecular dynamics (MD) can be used to probe and understand adsorbent-adsorbate interactions at the molecular scale while also providing a powerful visual picture of how the adsorption process occurs. In recent years, numerous studies have emerged that used MD as a theoretical tool to study adsorption on FPPs, and in this work, these studies are presented and discussed across three main categories: (i) organic pollutants, (ii) inorganic pollutants, and (iii) biological macromolecules. Emphasis is placed on how MD-calculated interaction energies can align with experimental data from batch adsorption experiments, and particular consideration is given to how MD can complement existing approaches. This work demonstrates that MD can provide significant insight into the adsorption behavior of different pollutants, but modern approaches are lacking a generalized formula for theoretically predicting adsorption behavior. With more data, MD could be used as a robust, initial assessment tool for the prioritization of chemical pollutants in the context of the microplastisphere, meaning that less time-consuming and potentially wasteful experiments would need to be carried out. With additional refinement, modern simulations will facilitate an improved understanding of chemical adsorption in aquatic environments.

6.
ACS Omega ; 7(30): 26945-26951, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936424

RESUMEN

Fast and accurate computational approaches to predicting reactivity in sulfa-Michael additions are required for high-throughput screening in toxicology (e.g., predicting excess aquatic toxicity and skin sensitization), chemical synthesis, covalent drug design (e.g., targeting cysteine), and data set generation for machine learning. The kinetic glutathione chemoassay is a time-consuming in chemico method used to extract kinetic data in the form of log(k GSH) for organic electrophiles. In this work, we use density functional theory to compare the use of transition states (TSs) and enolate intermediate structures following C-S bond formation in the prediction of log(k GSH) for a diverse group of 1,4 Michael acceptors. Despite the widespread use of transition state calculations in the literature to predict sulfa-Michael reactivity, we observe that intermediate structures show much better performance for the prediction of log(k GSH), are faster to calculate, and easier to obtain than TSs. Furthermore, we show how linear combinations of atomic charges from the isolated Michael acceptors can further improve predictions, even when using inexpensive semiempirical quantum chemistry methods. Our models can be used widely in the chemical sciences (e.g., in the prediction of toxicity relevant to the environment and human health, synthesis planning, and the design of cysteine-targeting covalent inhibitors), and represent a low-cost, sustainable approach to reactivity assessment.

7.
Chem Commun (Camb) ; 56(88): 13661-13664, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33073273

RESUMEN

Animal testing remains a contentious ethical issue in predictive toxicology. Thus, a fast, versatile, low-cost quantum chemical model is presented for predicting the risk of Ames mutagenicity in a series of 1,4 Michael acceptor type compounds. This framework eliminates the need for transition state calculations, and uses an intermediate structure to probe the reactivity of aza-Michael acceptors. This model can be used in a variety of settings e.g., the design of targeted covalent inhibitors and polyketide biosyntheses.


Asunto(s)
Antibacterianos/química , Modelos Químicos , Mutágenos/química , Antibacterianos/farmacología , Teoría Funcional de la Densidad , Estructura Molecular , Mutágenos/farmacología , Relación Estructura-Actividad Cuantitativa , Salmonella typhimurium/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA