Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 163(3): 712-23, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496610

RESUMEN

The organization of a cell emerges from the interactions in protein networks. The interactome is critically dependent on the strengths of interactions and the cellular abundances of the connected proteins, both of which span orders of magnitude. However, these aspects have not yet been analyzed globally. Here, we have generated a library of HeLa cell lines expressing 1,125 GFP-tagged proteins under near-endogenous control, which we used as input for a next-generation interaction survey. Using quantitative proteomics, we detect specific interactions, estimate interaction stoichiometries, and measure cellular abundances of interacting proteins. These three quantitative dimensions reveal that the protein network is dominated by weak, substoichiometric interactions that play a pivotal role in defining network topology. The minority of stable complexes can be identified by their unique stoichiometry signature. This study provides a rich interaction dataset connecting thousands of proteins and introduces a framework for quantitative network analysis.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteómica/métodos , Línea Celular , Cromosomas Artificiales Bacterianos/genética , Humanos
2.
Nature ; 571(7764): E5, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31243360

RESUMEN

Change history: In Fig. 1b and c of this Letter, the inset times in the DIC and GFP microscopy images should be in minutes ('min') instead of seconds ('s'). This has not been corrected online.

3.
J Cell Sci ; 134(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34028542

RESUMEN

In the fission yeast, Schizosaccharomyces pombe, the high-affinity hexose transporter, Ght5, must be transcriptionally upregulated and localized to the cell surface for cell division under limited glucose. Although cell-surface localization of Ght5 depends on Target of rapamycin complex 2 (TORC2), the molecular mechanisms by which TORC2 ensures proper localization of Ght5 remain unknown. We performed genetic screening for gene mutations that restore Ght5 localization on the cell surface in TORC2-deficient mutant cells, and identified a gene encoding an uncharacterized α-arrestin-like protein, Aly3/SPCC584.15c. α-arrestins are thought to recruit a ubiquitin ligase to membrane-associated proteins. Consistently, Ght5 is ubiquitylated in TORC2-deficient cells, and this ubiquitylation is dependent on Aly3. TORC2 supposedly enables cell-surface localization of Ght5 by preventing Aly3-dependent ubiquitylation and subsequent ubiquitylation-dependent translocation of Ght5 to vacuoles. Surprisingly, nitrogen starvation, but not glucose depletion, triggers Aly3-dependent transport of Ght5 to vacuoles in S. pombe, unlike budding yeast hexose transporters, vacuolar transport of which is initiated upon changes in hexose concentration. This study provides new insights into the molecular mechanisms controlling the subcellular localization of hexose transporters in response to extracellular stimuli.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Arrestina , Glucosa , Proteínas Facilitadoras del Transporte de la Glucosa , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Proteínas de Transporte de Monosacáridos/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
EMBO J ; 34(2): 251-65, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25476450

RESUMEN

The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy.


Asunto(s)
Biomarcadores/metabolismo , Interfase/fisiología , Proteínas de la Membrana/metabolismo , Mitosis/fisiología , Proteoma/análisis , Proteómica/métodos , Biotinilación , Cadherinas/metabolismo , Cromatografía de Afinidad , Células HeLa , Humanos , Células MCF-7 , Protocadherinas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Nature ; 469(7329): 226-30, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21196934

RESUMEN

During mitosis, adherent animal cells undergo a drastic shape change, from essentially flat to round. Mitotic cell rounding is thought to facilitate organization within the mitotic cell and be necessary for the geometric requirements of division. However, the forces that drive this shape change remain poorly understood in the presence of external impediments, such as a tissue environment. Here we use cantilevers to track cell rounding force and volume. We show that cells have an outward rounding force, which increases as cells enter mitosis. We find that this mitotic rounding force depends both on the actomyosin cytoskeleton and the cells' ability to regulate osmolarity. The rounding force itself is generated by an osmotic pressure. However, the actomyosin cortex is required to maintain this rounding force against external impediments. Instantaneous disruption of the actomyosin cortex leads to volume increase, and stimulation of actomyosin contraction leads to volume decrease. These results show that in cells, osmotic pressure is balanced by inwardly directed actomyosin cortex contraction. Thus, by locally modulating actomyosin-cortex-dependent surface tension and globally regulating osmotic pressure, cells can control their volume, shape and mechanical properties.


Asunto(s)
Actomiosina/metabolismo , Forma de la Célula/fisiología , Citoesqueleto/metabolismo , Mitosis , Animales , Forma de la Célula/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Citocalasina D/farmacología , Citoesqueleto/efectos de los fármacos , Células HeLa , Humanos , Presión Hidrostática , Microscopía de Fuerza Atómica , Modelos Biológicos , Concentración Osmolar , Presión Osmótica , Profase
6.
Biophys J ; 111(3): 589-600, 2016 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-27508442

RESUMEN

The cell cortex is a key structure for the regulation of cell shape and tissue organization. To reach a better understanding of the mechanics and dynamics of the cortex, we study here HeLa cells in mitosis as a simple model system. In our assay, single rounded cells are dynamically compressed between two parallel plates. Our measurements indicate that the cortical layer is the dominant mechanical element in mitosis as opposed to the cytoplasmic interior. To characterize the time-dependent rheological response, we extract a complex elastic modulus that characterizes the resistance of the cortex against area dilation. In this way, we present a rheological characterization of the cortical actomyosin network in the linear regime. Furthermore, we investigate the influence of actin cross linkers and the impact of active prestress on rheological behavior. Notably, we find that cell mechanics values in mitosis are captured by a simple rheological model characterized by a single timescale on the order of 10 s, which marks the onset of fluidity in the system.


Asunto(s)
Membrana Celular/metabolismo , Mitosis , Reología , Fenómenos Biomecánicos , Elasticidad , Células HeLa , Humanos , Viscosidad
7.
Trends Biochem Sci ; 36(8): 444-50, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21646023

RESUMEN

Atomic force microscopy (AFM) is a force sensing nanoscopic tool that can be used to undertake a multiscale approach to understand the mechanisms that underlie cell shape change, ranging from the cellular to molecular scale. In this review paper, we discuss the use of AFM to characterize the dramatic shape changes of mitotic cells. AFM-based mechanical assays can be applied to measure the considerable rounding force and hydrostatic pressure generated by mitotic cells. A complementary AFM technique, single-molecule force spectroscopy, is able to quantify the interactions and mechanisms that functionally regulate individual proteins. Future developments of these nanomechanical methods, together with advances in light microscopy imaging and cell biological and genetic tools, should provide further insight into the biochemical, cellular and mechanical processes that govern mitosis and other cell shape change phenomena.


Asunto(s)
Membrana Celular/metabolismo , Forma de la Célula/fisiología , Proteínas de la Membrana/metabolismo , Microscopía de Fuerza Atómica/métodos , Nanotecnología/métodos , Fenómenos Biomecánicos , Presión Hidrostática , Proteínas de la Membrana/análisis , Mitosis
8.
EMBO J ; 30(8): 1520-35, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21399614

RESUMEN

Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP-SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non-specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins.


Asunto(s)
Centrosoma/metabolismo , Proteínas/metabolismo , Proteómica , Centriolos/química , Centriolos/metabolismo , Centrosoma/química , Cilios/metabolismo , Células HeLa , Humanos , Espectrometría de Masas , Microscopía Fluorescente , Orgánulos , Proteínas/química
9.
R Soc Open Sci ; 10(10): 230404, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37859837

RESUMEN

Mitochondria perform critical functions, including respiration, ATP production, small molecule metabolism, and anti-oxidation, and they are involved in a number of human diseases. While the mitochondrial genome contains a small number of protein-coding genes, the vast majority of mitochondrial proteins are encoded by nuclear genes. In fission yeast Schizosaccharomyces pombe, we screened 457 deletion (del) mutants deficient in nuclear-encoded mitochondrial proteins, searching for those that fail to form colonies in culture medium containing low glucose (0.03-0.1%; low-glucose sensitive, lgs), but that proliferate in regular 2-3% glucose medium. Sixty-five (14%) of the 457 deletion mutants displayed the lgs phenotype. Thirty-three of them are defective either in dehydrogenases, subunits of respiratory complexes, the citric acid cycle, or in one of the nine steps of the CoQ10 biosynthetic pathway. The remaining 32 lgs mutants do not seem to be directly related to respiration. Fifteen are implicated in translation, and six encode transporters. The remaining 11 function in anti-oxidation, amino acid synthesis, repair of DNA damage, microtubule cytoskeleton, intracellular mitochondrial distribution or unknown functions. These 32 diverse lgs genes collectively maintain mitochondrial functions under low (1/20-1/60× normal) glucose concentrations. Interestingly, 30 of them have homologues associated with human diseases.

10.
Dev Cell ; 12(1): 17-30, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17199038

RESUMEN

The centromere is the chromosomal site that joins to microtubules during mitosis for proper segregation. Determining the location of a centromere-specific histone H3 called CENP-A at the centromere is vital for understanding centromere structure and function. Here, we report the identification of three human proteins essential for centromere/kinetochore structure and function, hMis18alpha, hMis18beta, and M18BP1, the complex of which is accumulated specifically at the telophase-G1 centromere. We provide evidence that such centromeric localization of hMis18 is essential for the subsequent recruitment of de novo-synthesized CENP-A. If any of the three is knocked down by RNAi, centromere recruitment of newly synthesized CENP-A is rapidly abolished, followed by defects such as misaligned chromosomes, anaphase missegregation, and interphase micronuclei. Tricostatin A, an inhibitor to histone deacetylase, suppresses the loss of CENP-A recruitment to centromeres in hMis18alpha RNAi cells. Telophase centromere chromatin may be primed or licensed by the hMis18 complex and RbAp46/48 to recruit CENP-A through regulating the acetylation status in the centromere.


Asunto(s)
Autoantígenos/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular , Centrómero/efectos de los fármacos , Proteína A Centromérica , Proteínas Cromosómicas no Histona/química , Segregación Cromosómica/efectos de los fármacos , Secuencia de Consenso , Genoma Humano/efectos de los fármacos , Células HeLa , Humanos , Ácidos Hidroxámicos/farmacología , Metafase/efectos de los fármacos , Datos de Secuencia Molecular , Mutación/genética , Filogenia , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myb/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Telofase/efectos de los fármacos , Vertebrados
11.
Nat Methods ; 5(5): 409-15, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18391959

RESUMEN

The interpretation of genome sequences requires reliable and standardized methods to assess protein function at high throughput. Here we describe a fast and reliable pipeline to study protein function in mammalian cells based on protein tagging in bacterial artificial chromosomes (BACs). The large size of the BAC transgenes ensures the presence of most, if not all, regulatory elements and results in expression that closely matches that of the endogenous gene. We show that BAC transgenes can be rapidly and reliably generated using 96-well-format recombineering. After stable transfection of these transgenes into human tissue culture cells or mouse embryonic stem cells, the localization, protein-protein and/or protein-DNA interactions of the tagged protein are studied using generic, tag-based assays. The same high-throughput approach will be generally applicable to other model systems.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Genómica/métodos , Mamíferos/genética , Mamíferos/metabolismo , Proteínas/metabolismo , Transgenes/genética , Animales , Antibacterianos/farmacología , Línea Celular , Resistencia a Medicamentos , Regulación de la Expresión Génica , Biblioteca de Genes , Ingeniería Genética , Genoma , Análisis por Matrices de Proteínas , Unión Proteica , Transporte de Proteínas , Proteínas/genética
12.
Nat Cell Biol ; 6(11): 1135-41, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15502821

RESUMEN

Defects in kinetochore proteins often lead to aneuploidy and cancer. Mis12-Mtw1 is a conserved, essential kinetochore protein family. Here, we show that a Mis12 core complex exists in Schizosaccharomyces pombe and human cells. Nine polypeptides bind to human hMis12; two of these, HEC1 and Zwint-1, are authentic kinetochore proteins. Four other human proteins of unknown function (c20orf172, DC8, PMF1 and KIAA1570) correspond to yeast Mis12-Mtw1 complex components and are shown to be required for chromosome segregation in HeLa cells using RNA interference (RNAi). Surprisingly, hMis12 also forms a stable complex with the centromeric heterochromatin components HP1alpha and HP1gamma. Double HP1 RNAi abolishes kinetochore localization of hMis12 and DC8. Therefore, centromeric HP1 may be the base to anchor the hMis12 core complex that is enriched with coiled coils and extends to outer Zwint-1 during mitosis.


Asunto(s)
Proteínas de Ciclo Celular/genética , Centrómero , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Schizosaccharomyces pombe/genética , Secuencia de Bases , Homólogo de la Proteína Chromobox 5 , Humanos , Datos de Secuencia Molecular , Interferencia de ARN , ARN de Hongos
13.
Biomolecules ; 11(10)2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34680098

RESUMEN

Target of rapamycin (TOR) kinases form two distinct complexes, TORC1 and TORC2, which are evolutionarily conserved among eukaryotes. These complexes control intracellular biochemical processes in response to changes in extracellular nutrient conditions. Previous studies using the fission yeast, Schizosaccharomyces pombe, showed that the TORC2 signaling pathway, which is essential for cell proliferation under glucose-limited conditions, ensures cell-surface localization of a high-affinity hexose transporter, Ght5, by downregulating its endocytosis. The TORC2 signaling pathway retains Ght5 on the cell surface, depending on the presence of nitrogen sources in medium. Ght5 is transported to vacuoles upon nitrogen starvation. In this review, we discuss the molecular mechanisms underlying this regulation to cope with nutritional stress, a response which may be conserved from yeasts to mammals.


Asunto(s)
Proliferación Celular/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Complejos Multiproteicos/genética , Proteínas de Schizosaccharomyces pombe/genética , Glucosa/metabolismo , Nitrógeno/metabolismo , Fosforilación/genética , Schizosaccharomyces/genética , Transducción de Señal/genética
14.
Open Biol ; 11(4): 200369, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33823662

RESUMEN

Mitochondria are essential for regulation of cellular respiration, energy production, small molecule metabolism, anti-oxidation and cell ageing, among other things. While the mitochondrial genome contains a small number of protein-coding genes, the great majority of mitochondrial proteins are encoded by chromosomal genes. In the fission yeast Schizosaccharomyces pombe, 770 proteins encoded by chromosomal genes are located in mitochondria. Of these, 195 proteins, many of which are implicated in translation and transport, are absolutely essential for viability. We isolated and characterized eight temperature-sensitive (ts) strains with mutations in essential mitochondrial proteins. Interestingly, they are also sensitive to limited nutrition (glucose and/or nitrogen), producing low-glucose-sensitive and 'super-housekeeping' phenotypes. They fail to produce colonies under low-glucose conditions at the permissive temperature or lose cell viability under nitrogen starvation at the restrictive temperature. The majority of these ts mitochondrial mutations may cause defects of gene expression in the mitochondrial genome. mrp4 and mrp17 are defective in mitochondrial ribosomal proteins. ppr3 is defective in rRNA expression, and trz2 and vrs2 are defective in tRNA maturation. This study promises potentially large dividends because mitochondrial quiescent functions are vital for human brain and muscle, and also for longevity.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Fenotipo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Esenciales , Humanos , Estrés Fisiológico
15.
Mol Biol Cell ; 17(5): 2287-302, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16510521

RESUMEN

Cohesin maintains sister chromatid cohesion until its Rad21/Scc1/Mcd1 is cleaved by separase during anaphase. DNA topoisomerase II (topo II) maintains the proper topology of chromatid DNAs and is essential for chromosome segregation. Here we report direct observations of mitotic progression in individual HeLa cells after functional disruptions of hRad21, NIPBL, a loading factor for hRad21, and topo II alpha,beta by RNAi and a topo II inhibitor, ICRF-193. Mitosis is delayed in a Mad2-dependent manner after disruption of either or both cohesin and topo II. In hRad21 depletion, interphase pericentric architecture becomes aberrant, and anaphase is virtually permanently delayed as preseparated chromosomes are misaligned on the metaphase spindle. Topo II disruption perturbs centromere organization leading to intense Bub1, but no Mad2, on kinetochores and sustains a Mad2-dependent delay in anaphase onset with persisting securin. Thus topo II impinges upon centromere/kinetochore function. Disruption of topo II by RNAi or ICRF-193 overrides the mitotic delay induced by cohesin depletion: sister centromeres are aligned and anaphase spindle movements occur. The ensuing accumulation of catenations in preseparated sister chromatids may overcome the reduced tension arising from cohesin depletion, causing the override. Cohesin and topo II have distinct, yet coordinated functions in metaphase alignment.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Mitosis , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Huso Acromático/metabolismo , Proteínas de Unión al Calcio/análisis , Proteínas de Unión al Calcio/genética , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromosomas Humanos/metabolismo , Ciclina B/metabolismo , Ciclina B1 , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN , Dicetopiperazinas , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Cinetocoros/química , Cinetocoros/metabolismo , Proteínas Mad2 , Metafase/genética , Mitosis/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Piperazinas/farmacología , Proteínas Quinasas/análisis , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas/genética , Proteínas/metabolismo , Interferencia de ARN , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas Represoras/análisis , Proteínas Represoras/genética , Telómero/metabolismo , Inhibidores de Topoisomerasa II , Cohesinas
16.
FEBS Lett ; 592(19): 3295-3304, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30156266

RESUMEN

Many human-cultured cell lines survive glucose starvation, but the underlying mechanisms remain unclear. Here, we searched for proteins required for cellular adaptation to glucose-limited conditions and identified several endoplasmic reticulum chaperones in the glucose-regulated protein (GRP) family as proteins enriched in the cellular membrane. Surprisingly, these proteins, which are required for cell surface localization of GLUT1 under high-glucose conditions, become dispensable for targeting GLUT1 to the surface upon glucose starvation. In marked contrast, cell surface localization of single-pass transmembrane proteins, such as epidermal growth factor receptor and CD98, is not disturbed by GRP78 depletion regardless of the extracellular glucose level. These results indicate that the extracellular glucose level regulates dependence on the GRPs for cell surface localization of multipass transmembrane proteins.


Asunto(s)
Membrana Celular/metabolismo , Espacio Extracelular/metabolismo , Glucosa/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Proteínas de la Membrana/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica
17.
Curr Biol ; 12(5): 347-58, 2002 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-11882285

RESUMEN

BACKGROUND: Proteins conserved from yeast to human hold two sister chromatids together. The failure to form cohesion in the S phase results in premature separation of chromatids in G2/M. Mitotic kinetochores free from microtubules or the lack of tension are known to activate spindle checkpoint. RESULTS: The loss of chromatid cohesion in fission yeast mutants (mis4-242 and rad21-K1) leads to the activation of Mad2- and Bub1-dependent checkpoint, possibly due to a diminished microtubule-kinetochore interaction. Bub1, a checkpoint kinase, localizes briefly at early mitotic kinetochores in wild-type, whereas the cohesion mutation greatly increases the duration of kinetochore localization. Bub1 is bound to the central centromere region of mitotic cells. These cohesion mutants are hypersensitive to a tubulin poison and are synthetic lethal with dis1 and bir1/cut17, which are defective in microtubule-kinetochore interaction. The formation of specialized centromere chromatin containing CENP-A does not require cohesion. Dominant-negative noncleavable Rad21 fails to activate checkpoint but blocks sister chromatid separation and full spindle elongation in anaphase. CONCLUSIONS: Mis4 and Rad21 (budding yeast Scc2 and Scc1 homologs, respectively) act in establishing the normal spindle-kinetochore interaction in early mitosis and inhibit sister chromatid separation until the cleavage of Rad21 in anaphase. Checkpoint directly or indirectly monitors the states of cohesion in early mitosis. Full spindle extension occurs with unequal nuclear division in cohesion mutants in the absence of Mad2.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Proteínas de Unión al ADN , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas Fluorescentes Verdes , Cinetocoros/metabolismo , Proteínas Luminiscentes/metabolismo , Mutación , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestructura , Huso Acromático/metabolismo , Temperatura
18.
Nat Commun ; 8(1): 1266, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097687

RESUMEN

To divide, most animal cells drastically change shape and round up against extracellular confinement. Mitotic cells facilitate this process by generating intracellular pressure, which the contractile actomyosin cortex directs into shape. Here, we introduce a genome-scale microcantilever- and RNAi-based approach to phenotype the contribution of > 1000 genes to the rounding of single mitotic cells against confinement. Our screen analyzes the rounding force, pressure and volume of mitotic cells and localizes selected proteins. We identify 49 genes relevant for mitotic rounding, a large portion of which have not previously been linked to mitosis or cell mechanics. Among these, depleting the endoplasmic reticulum-localized protein FAM134A impairs mitotic progression by affecting metaphase plate alignment and pressure generation by delocalizing cortical myosin II. Furthermore, silencing the DJ-1 gene uncovers a link between mitochondria-associated Parkinson's disease and mitotic pressure. We conclude that mechanical phenotyping is a powerful approach to study the mechanisms governing cell shape.


Asunto(s)
Actomiosina/metabolismo , Forma de la Célula/genética , Proteínas de la Membrana/genética , Mitosis/genética , Proteína Desglicasa DJ-1/genética , Citoesqueleto de Actina/metabolismo , Animales , Fenómenos Biomecánicos/genética , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Metafase/genética , Ratones , Microscopía de Fuerza Atómica , Miosina Tipo II/metabolismo , Enfermedad de Parkinson/genética , Fenotipo , Presión , Análisis de la Célula Individual , Huso Acromático/metabolismo , Tensión Superficial , Transgenes
19.
Biomol Concepts ; 6(5-6): 423-30, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26418646

RESUMEN

The cell must utilise nutrients to generate energy as a means of sustaining its life. As the environment is not necessarily abundant in nutrients and oxygen, the cell must be able to regulate energy metabolism to adapt to changes in extracellular and intracellular conditions. Recently, several key regulators of energy metabolism have been reported. This review describes the recent advances in molecular regulation of energy metabolism, focusing mainly on glycolysis and its shunt pathways. Human diseases, such as cancer and neurodegenerative disorders, are also discussed in relation to failure of energy metabolism regulation.


Asunto(s)
Proliferación Celular/fisiología , Metabolismo Energético/fisiología , Glucosa/metabolismo , Glucólisis/fisiología , Transporte Biológico , Respiración de la Célula/fisiología , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo
20.
Nat Commun ; 6: 8872, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26602832

RESUMEN

Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.


Asunto(s)
Actomiosina , Células Epiteliales/ultraestructura , Epitelio/ultraestructura , Presión Hidrostática , Mitosis , Huso Acromático/ultraestructura , Animales , Proliferación Celular , Forma de la Célula , Tamaño de la Célula , Supervivencia Celular , Perros , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Metafase , Microscopía Confocal , Microscopía Electrónica de Rastreo , Presión , Estrés Mecánico , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA