Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Biol ; 16(4): e2004162, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29708962

RESUMEN

The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Células Neuroepiteliales/metabolismo , Neurogénesis/genética , Receptores Notch/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Animales Modificados Genéticamente , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular , Embrión de Pollo , Pollos , Femenino , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Células Neuroepiteliales/citología , Neuronas/citología , Neuronas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Transfección , Ubiquitina-Proteína Ligasas/metabolismo
2.
Genes Dev ; 24(11): 1186-200, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20516201

RESUMEN

The secreted ligand Sonic Hedgehog (Shh) organizes the pattern of cellular differentiation in the ventral neural tube. For the five neuronal subtypes, increasing levels and durations of Shh signaling direct progenitors to progressively more ventral identities. Here we demonstrate that this mode of action is not applicable to the generation of the most ventral cell type, the nonneuronal floor plate (FP). In chick and mouse embryos, FP specification involves a biphasic response to Shh signaling that controls the dynamic expression of key transcription factors. During gastrulation and early somitogenesis, FP induction depends on high levels of Shh signaling. Subsequently, however, prospective FP cells become refractory to Shh signaling, and this is a prerequisite for the elaboration of their identity. This prompts a revision to the model of graded Shh signaling in the neural tube, and provides insight into how the dynamics of morphogen signaling are deployed to extend the patterning capacity of a single ligand. In addition, we provide evidence supporting a common scheme for FP specification by Shh signaling that reconciles mechanisms of FP development in teleosts and amniotes.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas Hedgehog/metabolismo , Tubo Neural/citología , Tubo Neural/crecimiento & desarrollo , Transducción de Señal , Células Madre/fisiología , Animales , Biomarcadores/metabolismo , Embrión de Pollo , Regulación hacia Abajo , Embrión de Mamíferos , Embrión no Mamífero , Femenino , Ratones , Neuronas/citología , Somitos/crecimiento & desarrollo , Factores de Tiempo , Pez Cebra
3.
Development ; 140(7): 1467-74, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23462473

RESUMEN

The conventional explanation for how a morphogen patterns a tissue holds that cells interpret different concentrations of an extrinsic ligand by producing corresponding levels of intracellular signalling activity, which in turn regulate differential gene expression. However, this view has been challenged, raising the possibility that distinct mechanisms are used to interpret different morphogens. Here, we investigate graded BMP signalling in the vertebrate neural tube. We show that defined exposure times to Bmp4 generate distinct levels of signalling and induce specific dorsal identities. Moreover, we provide evidence that a dynamic gradient of BMP activity confers progressively more dorsal neural identities in vivo. These results highlight a strategy for morphogen interpretation in which the tight temporal control of signalling is important for the spatial pattern of cellular differentiation.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Tubo Neural/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/fisiología , Proteína Morfogenética Ósea 4/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Proteínas Morfogenéticas Óseas/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Tubo Neural/citología , Tubo Neural/efectos de los fármacos , Tubo Neural/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Médula Espinal/efectos de los fármacos , Médula Espinal/embriología , Médula Espinal/metabolismo
4.
Development ; 139(2): 259-68, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22159578

RESUMEN

BMP activity is essential for many steps of neural development, including the initial role in neural induction and the control of progenitor identities along the dorsal-ventral axis of the neural tube. Taking advantage of chick in ovo electroporation, we show a novel role for BMP7 at the time of neurogenesis initiation in the spinal cord. Using in vivo loss-of-function experiments, we show that BMP7 activity is required for the generation of three discrete subpopulations of dorsal interneurons: dI1-dI3-dI5. Analysis of the BMP7 mouse mutant shows the conservation of this activity in mammals. Furthermore, this BMP7 activity appears to be mediated by the canonical Smad pathway, as we demonstrate that Smad1 and Smad5 activities are similarly required for the generation of dI1-dI3-dI5. Moreover, we show that this role is independent of the patterned expression of progenitor proteins in the dorsal spinal cord, but depends on the BMP/Smad regulation of specific proneural proteins, thus narrowing this BMP7 activity to the time of neurogenesis. Together, these data establish a novel role for BMP7 in primary neurogenesis, the process by which a neural progenitor exits the cell cycle and enters the terminal differentiation pathway.


Asunto(s)
Proteína Morfogenética Ósea 7/metabolismo , Interneuronas/fisiología , Neurogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Smad Reguladas por Receptores/metabolismo , Médula Espinal/embriología , Análisis de Varianza , Animales , Embrión de Pollo , Inmunohistoquímica , Hibridación in Situ , Interneuronas/metabolismo , Luciferasas , Ratones , Mutación/genética , Neurogénesis/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Smad Reguladas por Receptores/genética
5.
Neuron ; 107(4): 617-630.e6, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32559415

RESUMEN

Stable genomic integration of exogenous transgenes is essential in neurodevelopmental and stem cell studies. Despite tools driving increasingly efficient genomic insertion with DNA vectors, transgenesis remains fundamentally hindered by the impossibility of distinguishing integrated from episomal transgenes. Here, we introduce an integration-coupled On genetic switch, iOn, which triggers gene expression upon incorporation into the host genome through transposition, thus enabling rapid and accurate identification of integration events following transfection with naked plasmids. In vitro, iOn permits rapid drug-free stable transgenesis of mouse and human pluripotent stem cells with multiple vectors. In vivo, we demonstrate faithful cell lineage tracing, assessment of regulatory elements, and mosaic analysis of gene function in somatic transgenesis experiments that reveal neural progenitor potentialities and interaction. These results establish iOn as a universally applicable strategy to accelerate and simplify genetic engineering in cultured systems and model organisms by conditioning transgene activation to genomic integration.


Asunto(s)
Expresión Génica , Técnicas de Transferencia de Gen , Células-Madre Neurales , Transgenes , Animales , Linaje de la Célula , Vectores Genéticos , Humanos , Ratones
6.
Light Sci Appl ; 7: 12, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839589

RESUMEN

Multiphoton microscopy combined with genetically encoded fluorescent indicators is a central tool in biology. Three-photon (3P) microscopy with excitation in the short-wavelength infrared (SWIR) water transparency bands at 1.3 and 1.7 µm opens up new opportunities for deep-tissue imaging. However, novel strategies are needed to enable in-depth multicolor fluorescence imaging and fully develop such an imaging approach. Here, we report on a novel multiband SWIR source that simultaneously emits ultrashort pulses at 1.3 and 1.7 µm that has characteristics optimized for 3P microscopy: sub-70 fs duration, 1.25 MHz repetition rate, and µJ-range pulse energy. In turn, we achieve simultaneous 3P excitation of green fluorescent protein (GFP) and red fluorescent proteins (mRFP, mCherry, tdTomato) along with third-harmonic generation. We demonstrate in-depth dual-color 3P imaging in a fixed mouse brain, chick embryo spinal cord, and live adult zebrafish brain, with an improved signal-to-background ratio compared to multicolor two-photon imaging. This development opens the way towards multiparametric imaging deep within scattering tissues.

7.
Neuron ; 93(3): 542-551.e4, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28132826

RESUMEN

Unequal centrosome maturation correlates with asymmetric division in multiple cell types. Nevertheless, centrosomal fate determinants have yet to be identified. Here, we show that the Notch pathway regulator Mindbomb1 co-localizes asymmetrically with centriolar satellite proteins PCM1 and AZI1 at the daughter centriole in interphase. Remarkably, while PCM1 and AZI1 remain asymmetric during mitosis, Mindbomb1 is associated with either one or both spindle poles. Asymmetric Mindbomb1 correlates with neurogenic divisions and Mindbomb1 is inherited by the prospective neuron. By contrast, in proliferative divisions, a supplementary pool of Mindbomb1 associated with the Golgi apparatus in interphase is released during mitosis and compensates for Mindbomb1 centrosomal asymmetry. Finally, we show that preventing Mindbomb1 centrosomal association induces reciprocal Notch activation between sister cells and promotes symmetric divisions. Thus, we uncover a link between differential centrosome maturation and Notch signaling and reveal an unexpected compensatory mechanism involving the Golgi apparatus in restoring symmetry in proliferative divisions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Mitosis , Células-Madre Neurales/metabolismo , Neurogénesis , Ubiquitina-Proteína Ligasas/metabolismo , Animales , División Celular , Centrosoma/metabolismo , Embrión de Pollo , Aparato de Golgi/metabolismo , Receptores Notch/metabolismo , Transducción de Señal
8.
Dev Cell ; 18(4): 643-54, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20412778

RESUMEN

Muscle progenitors, labeled by the transcription factor Pax7, are responsible for muscle growth during development. The signals that regulate the muscle progenitor number during myogenesis are unknown. We show, through in vivo analysis, that Bmp signaling is involved in regulating fetal skeletal muscle growth. Ectopic activation of Bmp signaling in chick limbs increases the number of fetal muscle progenitors and fibers, while blocking Bmp signaling reduces their numbers, ultimately leading to small muscles. The Bmp effect that we observed during fetal myogenesis is diametrically opposed to that previously observed during embryonic myogenesis and that deduced from in vitro work. We also show that Bmp signaling regulates the number of satellite cells during development. Finally, we demonstrate that Bmp signaling is active in a subpopulation of fetal progenitors and satellite cells at the extremities of muscles. Overall, our results show that Bmp signaling plays differential roles in embryonic and fetal myogenesis.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Músculos/embriología , Células Satélite del Músculo Esquelético/citología , Transducción de Señal , Células Madre/citología , Animales , Diferenciación Celular , Embrión de Pollo , Hibridación in Situ , Ratones , Modelos Biológicos , Músculo Esquelético/metabolismo , Factor de Transcripción PAX7/metabolismo , Tendones/patología
9.
Science ; 343(6167): 146-7, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24408425
10.
Development ; 134(14): 2579-91, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17553906

RESUMEN

Muscle formation and vascular assembly during embryonic development are usually considered separately. In this paper, we investigate the relationship between the vasculature and muscles during limb bud development. We show that endothelial cells are detected in limb regions before muscle cells and can organize themselves in space in the absence of muscles. In chick limbs, endothelial cells are detected in the future zones of muscle cleavage, delineating the cleavage pattern of muscle masses. We therefore perturbed vascular assembly in chick limbs by overexpressing VEGFA and demonstrated that ectopic blood vessels inhibit muscle formation, while promoting connective tissue. Conversely, local inhibition of vessel formation using a soluble form of VEGFR1 leads to muscle fusion. The endogenous location of endothelial cells in the future muscle cleavage zones and the inverse correlation between blood vessels and muscle suggests that vessels are involved in the muscle splitting process. We also identify the secreted factor PDGFB (expressed in endothelial cells) as a putative molecular candidate mediating the muscle-inhibiting and connective tissue-promoting functions of blood vessels. Finally, we propose that PDGFB promotes the production of extracellular matrix and attracts connective tissue cells to the future splitting site, allowing separation of the muscle masses during the splitting process.


Asunto(s)
Vasos Sanguíneos/embriología , Tipificación del Cuerpo , Endotelio Vascular/embriología , Extremidades/embriología , Músculo Esquelético/embriología , Proteínas Proto-Oncogénicas c-sis/fisiología , Animales , Embrión de Pollo , Tejido Conectivo/embriología , Células Endoteliales/fisiología , Matriz Extracelular/fisiología , Extremidades/irrigación sanguínea , Extremidades/fisiología , Morfogénesis , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiología , Proteína MioD/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
11.
Dev Dyn ; 235(1): 105-14, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16193509

RESUMEN

We report here a method that allows fast, efficient, and low-cost screening for gene function in the vascular system of the vertebrate embryo. Through intracardiac delivery of nucleic acids optimally compacted by a specific cationic lipid, we are able to induce in vivo endothelial cell-specific gain-of-function during development of the vascular network in the chick embryo. When the nucleic acids are delivered during the period of intraembryonic hematopoiesis, aortic hemangioblasts, the forerunners of the hematopoietic stem cells known to derive from the aortic endothelium, are also labeled. Similarly, we show that siRNA could be used to induce loss-of-function in vascular endothelial cells. This gene transfer technique was also applied to the mouse embryo with a high efficiency. The present method allows large-scale analysis and may represent a new and versatile tool for functional genomics.


Asunto(s)
Embrión de Mamíferos/metabolismo , Endotelio Vascular/embriología , Técnicas de Transferencia de Gen , Vectores Genéticos , Células Madre Hematopoyéticas/citología , Liposomas , Neovascularización Fisiológica , Animales , Animales Modificados Genéticamente , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Ratones , Ratones Transgénicos , Neovascularización Fisiológica/genética , ARN Interferente Pequeño , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
12.
Birth Defects Res C Embryo Today ; 75(3): 226-36, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16187327

RESUMEN

Tendons and ligaments (T/L) are very similar fibrous tissues that respectively connect muscle to bone and bone to bone. They are comprised of fibroblasts that produce large amounts of extra-cellular matrix, resulting in a dense and hypocellular structure. The complex molecular organization of T/L, together with high water content, are responsible for their viscoelastic properties, hence insuring their mechanical function. We will first review recent work on tendon embryology and discuss ligament formation, which has been less documented. We will next summarize our current knowledge of T/L molecular architecture, alterations of which are a major cause for disease. We will finally focus on T/L repair after injury and on genetic diseases responsible for T/L defects.


Asunto(s)
Ligamentos/embriología , Ligamentos/patología , Traumatismos de los Tendones , Tendones/embriología , Tendones/patología , Fenómenos Biomecánicos , Tejido Conectivo , Técnicas de Cultivo , Embrión de Mamíferos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Humanos , Ligamentos/lesiones , Ligamentos Articulares/patología , Modelos Biológicos , Líquido Sinovial/metabolismo , Resistencia a la Tracción , Factores de Transcripción/metabolismo , Agua/metabolismo , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA