Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 48(17): 8423-30, 2009 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-19673502

RESUMEN

The first dinuclear nonperoxido tartrato complexes of vanadium(V), (NMe(4))(2)[V(2)O(4)((2R,3R)-H(2)tart)(2)] x 6 H(2)O (1), (NMe(4))(2)[V(2)O(2)((2R,3R)-tart)((2S,3S)-tart)] (2), (NEt(4))(2)[V(2)O(2)((2R,3R)-tart)((2S,3S)-tart)] (3) (tart = tartrato(4-) = C(4)H(2)O(6)(4-)) have been prepared from water-ethanol medium and characterized by X-ray structure analysis and spectral methods. The formation of the complexes has been found to be stereospecific; the composition and structure of anions containing one or both enantiomers of the ligand are profoundly different. The structure of anions in 1-3 also differs significantly from the structure of other dinuclear vanadium(V) alpha-hydroxycarboxylato complexes, but, interestingly, the geometry of the [V(2)O(2)((2R,3R)-tart)((2S,3S)-tart)](2-) ion resembles the structure of the [(VO)(2)((2R,3R)-tart)((2S,3S)-tart)](4-) ion which has a vanadium(IV) center. Using Raman and (51)V NMR spectroscopy the solvent dependent mutual transformations of [V(4)O(8)((2R,3R)-tart)(2)](4-) (V(4)L(2)-RR), [V(4)O(8)((2S,3S)-tart)(2)](4-) (V(4)L(2)-SS), [V(2)O(4)((2R,3R)-H(2)tart)(2)](2-) (V(2)L(2)-RR), [V(2)O(4)((2S,3S)-H(2)tart)(2)](2-) (V(2)L(2)-SS), and [V(2)O(2)((2R,3R)-tart)((2S,3S)-tart)](2-) (V(2)L(2)-rac) have been established. In aqueous solution the following reactions take place; 2 V(2)L(2)-rac --> V(2)L(2)-RR + V(2)L(2)-SS followed by partial decomposition, V(2)L(2)-RR --> V(4)L(2)-RR + 2 L (V(2)L(2)-SS --> V(4)L(2)-SS + 2 L). On the other hand V(2)L(2)-rac is stable in CH(3)CN solution while V(2)L(2)-RR (V(2)L(2)-SS) decomposes into several species.

2.
Inorg Chem ; 35(6): 1680-1684, 1996 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-11666391

RESUMEN

A crystalline glycylglycine complex of monoperoxovanadate has been obtained and its X-ray structure determined. The coordination is pentagonal bipyramidal with the peroxo group and a tridentate glycylglycine occupying the equatorial positions. The axial positions of the anion are occupied by the oxo ligand and by one oxygen of the peroxo group of the adjacent anion. The latter interaction establishes the seventh bond and produces a dimeric structure in the crystalline material. NMR studies of its dissolution in water combined with previously reported results from equilibrium measurements show that the dimer dissociates in water to the monomeric precursor. It is proposed that this monomer corresponds to the complex responsible for the inhibition of the vanadium-catalyzed decomposition of hydrogen peroxide by glycylglycine. Crystal structure of [NEt(4)][VO(O(2))(GlyGly)].1.58H(2)O: monoclinic, space group P2(1); Z = 4; a = 10.618(2) Å; b = 14.803(2) Å; c = 11.809(2) Å; beta = 101.37(2) degrees; V = 1819.7 Å(3); T = 198 K; R(F)() = 0.029 for 2664 data (I(o) >/= 2.5sigma(I(o))) and 431 variables.

3.
Inorg Chem ; 46(10): 3971-83, 2007 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-17419617

RESUMEN

A study of the aqueous H3O+(OH-)/H2VO4-/(2R,3R)-tartrate system has been performed at 273 K in a 1.0 mol/L Na+(Cl-) ionic medium using 51V NMR spectroscopy. In this relatively complicated system, more than 12 different species were observed. Ligand concentration, vanadate concentration, and pH variation studies were carried out, particularly for the range of pH 5.8-8.0 and for pH 2.4. Chemical shifts, vanadium-ligand stoichiometry, and also composition and formation constants for some, but not all, species are given. Despite some reduction of vanadium(V) to vanadium(IV) in an acidic medium at pH approximately 2.4, the stoichiometries of the principal species in solution at this pH were determined. Electrospray ionization mass spectra for some solutions were obtained and were in accordance with the conclusions drawn from the speciation studies. A series of crystalline vanadium(V) tartrato complexes M4[V4O8(tart)2].aq were also prepared and characterized. X-ray diffraction studies of Na4[V4O8(rac-tart)2].12H2O (1) and (NEt4)4[V4O8((R,R)-tart)2].6H2O (2) revealed unique tetranuclear [V4O8(tart)2]4- ions for which the {V4O4} rings have boat conformations.


Asunto(s)
Tartratos/síntesis química , Compuestos de Vanadio/síntesis química , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Indicadores y Reactivos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta
4.
Biochem Cell Biol ; 80(2): 225-39, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11989718

RESUMEN

The components and functions of the insulin receptor kinase signaling pathway have been conserved in a broad range of Metazoa ranging from mammals to insects and nematodes. There is a high degree of sequence homology and functional similarity between the human insulin receptor kinase (IRK) and the drosophila (Drosophila melanogaster) form (DIRK) of this enzyme. Similarly, a high degree of homology exists between human protein tyrosine phosphatase 1B (PTP1B) (which directly regulates IRK) and its drosophila counterpart DPTP61F (DPTP). However, genetic and biochemical studies have yet to demonstrate that DPTP61F acts in the DIRK pathway. Comparative structural modeling techniques using the known structures of human IRK and PTP1B as templates have yielded structures for the drosophila enzymes. The derived structures confirm that there is a high level of structural conservation at the tertiary level. Association of the DIRK and DPTP enzymes with each other was then investigated with a view to ascertaining whether DIRK might be a substrate of the DPTP. Evaluation of the interaction surfaces, including hydrophobic patch, shape, hydrogen bonding, and electrostatic compatibility, strongly suggested that the drosophila insulin receptor is a substrate of the DPTP. The interaction surfaces of the human and drosophila enzymes are structurally similar, although changes in critical residues modify possible electrostatic and hydrogen-bonding interactions. This suggests that in the mixed systems, DPTP-IRK or PTP1B-DIRK, the kinase domain will be a comparatively poor substrate for phosphatase activity when compared with the native systems.


Asunto(s)
Drosophila melanogaster/enzimología , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Sitios de Unión , Simulación por Computador , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/genética , Receptor de Insulina/genética , Homología de Secuencia de Aminoácido , Solventes/química , Especificidad por Sustrato , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA