RESUMEN
Binding of anti-PEG antibodies to poly(ethylene glycol) (PEG) on the surface of PEGylated liposomal doxorubicin (PLD) in vitro and in rats can activate complement and cause the rapid release of doxorubicin from the liposome interior. Here, we find that irinotecan liposomes (IL) and L-PLD, which have 16-fold lower levels of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-PEG2000 in their liposome membrane as compared to PLD, generate less complement activation but remain sensitive to destabilization and drug release by anti-PEG antibodies. Complement activation and liposome destabilization correlated with the theoretically estimated number of antibody molecules bound per liposome. Drug release from liposomes proceeded through the alternative complement pathway but was accelerated by the classical complement pathway. In contrast to PLD destabilization by anti-PEG immunoglobulin G (IgG), which proceeded by the insertion of membrane attack complexes in the lipid bilayer of otherwise intact PLD, anti-PEG IgG promoted the fusion of L-PLD, and IL to form unilamellar and oligo-vesicular liposomes. Anti-PEG immunoglobulin M (IgM) induced drug release from all liposomes (PLD, L-PLD, and IL) via the formation of unilamellar and oligo-vesicular liposomes. Anti-PEG IgG destabilized both PLD and L-PLD in rats, indicating that the reduction of PEG levels on liposomes is not an effective approach to prevent liposome destabilization by anti-PEG antibodies.
Asunto(s)
Doxorrubicina , Liposomas , Polietilenglicoles , Polietilenglicoles/química , Liposomas/química , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/análogos & derivados , Animales , Ratas , Anticuerpos/química , Anticuerpos/inmunología , Activación de Complemento/efectos de los fármacos , Fosfatidiletanolaminas/química , Liberación de FármacosRESUMEN
Methoxy polyethylene glycol (mPEG) is attached to many proteins, peptides, nucleic acids and nanomedicines to improve their biocompatibility. Antibodies that bind PEG are present in many individuals and can be generated upon administration of pegylated therapeutics. Anti-PEG antibodies that bind to the PEG "backbone" can accelerate drug clearance and detrimentally affect drug activity and safety, but no studies have examined how anti-methoxy PEG (mPEG) antibodies, which selectively bind the terminus of mPEG, affect pegylated drugs. Here, we investigated how defined IgG and IgM monoclonal antibodies specific to the PEG backbone (anti-PEG) or terminal methoxy group (anti-mPEG) affect pegylated liposomes or proteins with a single PEG chain, a single branched PEG chain, or multiple PEG chains. Large immune complexes can be formed between all pegylated compounds and anti-PEG antibodies but only pegylated liposomes formed large immune complexes with anti-mPEG antibodies. Both anti-PEG IgG and IgM antibodies accelerated the clearance of all pegylated compounds but anti-mPEG antibodies did not accelerate clearance of proteins with a single or branched PEG molecule. Pegylated liposomes were primarily taken up by Kupffer cells in the liver, but both anti-PEG and anti-mPEG antibodies directed uptake of a heavily pegylated protein to liver sinusoidal endothelial cells. Our results demonstrate that in contrast to anti-PEG antibodies, immune complex formation and drug clearance induced by anti-mPEG antibodies depends on pegylation architecture; compounds with a single or branched PEG molecule are unaffected by anti-mPEG antibodies but are increasingly affected as the number of PEG chain in a structure increases.