Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Infect Immun ; 84(1): 241-53, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26502911

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) causes invasive, drug-resistant skin and soft tissue infections. Reports that S. aureus bacteria survive inside macrophages suggest that the intramacrophage environment may be a niche for persistent infection; however, mechanisms by which the bacteria might evade macrophage phagosomal defenses are unclear. We examined the fate of the S. aureus-containing phagosome in THP-1 macrophages by evaluating bacterial intracellular survival and phagosomal acidification and maturation and by testing the impact of phagosomal conditions on bacterial viability. Multiple strains of S. aureus survived inside macrophages, and in studies using the MRSA USA300 clone, the USA300-containing phagosome acidified rapidly and acquired the late endosome and lysosome protein LAMP1. However, fewer phagosomes containing live USA300 bacteria than those containing dead bacteria associated with the lysosomal hydrolases cathepsin D and ß-glucuronidase. Inhibiting lysosomal hydrolase activity had no impact on intracellular survival of USA300 or other S. aureus strains, suggesting that S. aureus perturbs acquisition of lysosomal enzymes. We examined the impact of acidification on S. aureus intramacrophage viability and found that inhibitors of phagosomal acidification significantly impaired USA300 intracellular survival. Inhibition of macrophage phagosomal acidification resulted in a 30-fold reduction in USA300 expression of the staphylococcal virulence regulator agr but had little effect on expression of sarA, saeR, or sigB. Bacterial exposure to acidic pH in vitro increased agr expression. Together, these results suggest that S. aureus survives inside macrophages by perturbing normal phagolysosome formation and that USA300 may sense phagosomal conditions and upregulate expression of a key virulence regulator that enables its intracellular survival.


Asunto(s)
Catepsina D/inmunología , Glucuronidasa/inmunología , Proteínas de Membrana de los Lisosomas/inmunología , Macrófagos/inmunología , Staphylococcus aureus Resistente a Meticilina/inmunología , Proteínas Bacterianas/biosíntesis , Línea Celular , Humanos , Macrófagos/enzimología , Macrófagos/microbiología , Viabilidad Microbiana/inmunología , Fagocitosis/inmunología , Fagosomas/microbiología , Factor sigma/biosíntesis , Infecciones Estafilocócicas/microbiología , Transactivadores/biosíntesis , Factores de Transcripción , Factores de Virulencia
2.
Nat Biomed Eng ; 4(4): 407-420, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988458

RESUMEN

Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an 'interrogator' that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood-brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels. We used the robotic interrogator and a physiological multicompartmental reduced-order model of the experimental system to quantitatively predict the distribution of an inulin tracer perfused through the multi-organ human-body-on-chips. The automated culture system enables the imaging of cells in the organ chips and the repeated sampling of both the vascular and interstitial compartments without compromising fluidic coupling.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Dispositivos Laboratorio en un Chip , Microfluídica/métodos , Robótica/métodos , Barrera Hematoencefálica , Encéfalo , Calibración , Técnicas de Cultivo de Célula/instrumentación , Diseño de Equipo , Corazón , Humanos , Intestinos , Riñón , Hígado , Pulmón , Robótica/instrumentación , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA