Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cytokine ; 177: 156561, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38430694

RESUMEN

Cancer as an uncontrolled growth of cells due to existing mutation in host cells that may proliferate, induce angiogenesis and sometimes metastasize due to the favorable tumor microenvironment (TME). Since it kills more than any disease, biomedical science does not relent in studying the exact pathogenesis. It was believed to be a problem that lies in the nucleus of the host cells; however, recent oncology findings are shifting attention to the mitochondria as an adjuvant to cancer pathogenesis. The changes in the gene are strongly related to cellular metabolism and metabolic reprogramming. It is now understood that reprogramming the TME will have a direct effect on the immune cells' metabolism. Although there are a number of studies on immune cells' response towards tumor energy reprogramming and cancer progression, there is still no existence with the updated collation of these immune cells' response to distinct energy reprogramming in cancer studies. To this end, this mini review shed some light on cancer energy reprogramming mechanisms and enzyme degradation pathways, the cancer pathogenicity activity series involved with reduced lactate production, the specific immune cell responses due to the energy reprogramming. This study highlighted some prospects and future experiments in harnessing the host immune response towards the altered energy metabolism due to cancer.


Asunto(s)
Neoplasias , Humanos , Metabolismo Energético , Inmunidad , Microambiente Tumoral
2.
Bioorg Chem ; 144: 107096, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290186

RESUMEN

In the pursuit of discovering new selective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, a small collection of novel thiosemicarbazides (5a-5t) were designed and synthesized starting from 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide which was evaluated as a potent inhibitor of different CA isoforms in a previous study. The newly synthesized compounds were examined against four human carbonic anhydrases (hCA), namely transmembrane tumor-related hCA IX/XII and cytosolic widespread off-targets hCA I/II. In enzyme inhibition assays, all nineteen compounds display up to ∼340-fold selectivity for hCA IX/XII over off-target isoforms hCA I/II. Four compounds have enzyme inhibition values (Ki) lower than 10 nM against tumor-associated isoforms hCA IX/XII including two compounds in the subnanomolar range (5r and 5s; hCA XII; Ki: 0.69 and 0.87 nM). The potential binding interactions of the most potent compounds against hCA IX and XII, compounds 5s and 5r, respectively, were investigated using ensemble docking and molecular dynamics studies. Cell viability assays using human colorectal adenocarcinoma cell line HT-29 and healthy skin fibroblasts CCD-86Sk show that compound 5e selectively inhibits HT-29 cancer cell proliferation (IC50: 53.32 ± 7.74 µM for HT-29; IC50: 74.64 ± 14.15 µM for CCD-986Sk). Finally, Western blot assays show that compounds 5e and 5r significantly reduce the expression of hCA XII in HT-29 cells. Moreover, 5e shows better cytotoxic activity in hypoxia compared to normoxic conditions. Altogether, the newly designed compounds show stronger inhibition of the tumor-associated hCA IX and XII isoforms and several tested compounds show selective cytotoxicity as well as downregulation of hCA XII expression.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Neoplasias , Semicarbacidas , Humanos , Anhidrasa Carbónica IX , Relación Estructura-Actividad , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Sulfonamidas/farmacología , Sulfonamidas/química , Antígenos de Neoplasias/metabolismo , Anhidrasa Carbónica I , Isoformas de Proteínas/metabolismo , Indoles/farmacología , Estructura Molecular
3.
Bioorg Chem ; 121: 105688, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35189443

RESUMEN

A series of new spirothiazolidinone derivatives with a mandelic acid moiety were synthesized and subsequently tested in growth inhibition assays against Mycobacterium tuberculosis strain H37Rv. Compound 16 displayed the highest inhibition value of 98% at lower than 6.25 µg/mL concentration. A single crystal X-ray analysis was conducted on this compound to confirm the structure and determine its absolute configuration. Afterwards, reverse docking and molecular dynamics simulations of this specific stereoisomer were performed against a selection of 10 putative targets of M. tuberculosis to suggest possible mechanisms of action. Our results suggest HadAB, Pks13, DprE1, FadD32 and InhA as possible target proteins for the observed antimycobacterial activity of compound 16.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Humanos , Ácidos Mandélicos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/metabolismo , Relación Estructura-Actividad
4.
Anticancer Agents Med Chem ; 24(9): 649-667, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38367264

RESUMEN

INTRODUCTION: Carbonic anhydrases (CAs) are widespread metalloenzymes with the core function of catalyzing the interconversion of CO2 and HCO3 -. Targeting these enzymes using selective inhibitors has emerged as a promising approach for the development of novel therapeutic agents against multiple diseases. METHODS: A series of novel thiosemicarbazone-containing derivatives were synthesized, characterized, and tested for their inhibitory activity against pharmaceutically important human CA I (hCA I), II (hCA II), IX (hCA IX), and XII (hCA XII) using the single tail approach. RESULTS: The compounds generally inhibited the isoenzymes at low nanomolar concentrations, with compound 6b having Ki values of 7.16, 0.31, 92.5, and 375 nM against hCA I, II, IX and XII, respectively. Compound 6e exhibited Ki values of 27.6, 0.34, 872, and 94.5 nM against hCA I, II, IX and XII, respectively. CONCLUSION: To rationalize the inhibition data, molecular docking studies were conducted, providing insight into the binding mechanisms, molecular interactions, and selectivity of the compounds towards the isoenzymes.


Asunto(s)
Bencenosulfonamidas , Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Sulfonamidas , Tiosemicarbazonas , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Humanos , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/síntesis química , Anhidrasas Carbónicas/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA