Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203834

RESUMEN

Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes-Radium-223 and Radium-224 (223/224Ra)-in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.


Asunto(s)
Nanomedicina , Radio (Elemento) , Radio (Elemento)/uso terapéutico , Partículas alfa/uso terapéutico , Anticuerpos Monoclonales
2.
J Cell Physiol ; 238(5): 1080-1094, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012691

RESUMEN

Skeletal muscle plays a major role in whole-body glucose metabolism. Insulin resistance in skeletal muscle is characterized by decreased insulin-stimulated glucose uptake resulting from impaired intracellular trafficking and decreased glucose transporter 4 (GLUT4) expression. In this study, we illustrated that tilorone, a low-molecular-weight antiviral agent, improves glucose uptake in vitro and in vivo. Tilorone increased bone morphogenetic protein (BMP) signaling in C2C12 myoblasts, the transcription of multiple BMPs (BMP2, BMP4, BMP7, and BMP14), Smad4 expression, and the phosphorylation of BMP-mediated Smad1/5/8. The activation of Akt2/AS160 (TBC1D4) signaling, the critical regulator of GLUT4 translocation, was also increased, as well as the levels of GLUT4 and GLUT1, leading to enhanced uptake of the radioactively labeled glucose analog 18 F-fluoro-2-deoxyglucose (18 FDG). However, this excess glucose content did not result in increased ATP formation by mitochondrial respiration; both basal and ATP-linked respiration were diminished, thereby contributing to the induction of AMPK. In differentiated myotubes, AS160 phosphorylation and 18 FDG uptake also increased. Moreover, tilorone administration further increased insulin-stimulated phosphorylation of Akt2 and glucose uptake of myotubes indicating an insulin-sensitizing effect. Importantly, during in vivo experiments, the systemic administration of tilorone resulted in increased 18 FDG uptake of skeletal muscle, liver, and adipose tissue in C57BL/6 mice. Our results provide new perspectives for the treatment of type 2 diabetes, which has a limited number of treatments that regulate protein expression or translocation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Tilorona , Animales , Ratones , Adenosina Trifosfato/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fluorodesoxiglucosa F18/metabolismo , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Insulina/farmacología , Insulina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosforilación , Tilorona/farmacología , Tilorona/uso terapéutico
3.
Chemistry ; 29(21): e202203798, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36719326

RESUMEN

The introduction of a phenolate pendant arm in place of an acetate on AAZTA- and DATA-like ligands resulted in hepta- and hexadentate chelators able to form Ga(III) complexes with thermodynamic stability and kinetic inertness higher than that of other Ga(III) complexes based on the parent 6-amino-6-methylperhydro-1,4-diazepine scaffold. In particular, the heptadentate AAZ3A-endoHB with a phenolate arm on an endocyclic N-atom shows a logKGaL of 27.35 and a remarkable resistance to hydroxide coordination up to basic pH (pH>9). This behaviour allows to also improve the kinetic inertness of the complex showing a dissociation half-life (t1/2 ) at pH 7.4 of 76 h. Although also the hexadentate AAZ2A-exoHB chelator forms a stable (logKGaL =24.69) and inert (t1/2 =33 h at pH 7.4) Ga(III) complex, the 68 Ga labelling showed a better radiochemical yield with AAZ3A-endoHB, especially at room temperature. Thus, a bifunctional chelator of AAZ3A-endoHB was synthesized bearing an isothiocyanate group that was conjugated to the N-terminus of a c(RGD) peptide for integrin receptor targeting. Finally, the conjugate was successfully labelled with 68 Ga isotope, and the resulting radiotracer tested for its stability in human serum and then in vivo for targeting B16-F10 tumours with miniPET imaging.


Asunto(s)
Quelantes , Neoplasias , Humanos , Quelantes/química , Brazo , Radioisótopos de Galio/química , Radiofármacos/química , Tomografía de Emisión de Positrones/métodos
4.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108559

RESUMEN

Angiogenesis-related cell-surface molecules, including integrins, aminopeptidase N, vascular endothelial growth factor, and gastrin-releasing peptide receptor (GRPR), play a crucial role in tumour formation. Radiolabelled imaging probes targeting angiogenic biomarkers serve as valuable vectors in tumour identification. Nowadays, there is a growing interest in novel radionuclides other than gallium-68 (68Ga) or copper-64 (64Cu) to establish selective radiotracers for the imaging of tumour-associated neo-angiogenesis. Given its ideal decay characteristics (Eß+average: 632 KeV) and a half-life (T1/2 = 3.97 h) that is well matched to the pharmacokinetic profile of small molecules targeting angiogenesis, scandium-44 (44Sc) has gained meaningful attention as a promising radiometal for positron emission tomography (PET) imaging. More recently, intensive research has been centered around the investigation of 44Sc-labelled angiogenesis-directed radiopharmaceuticals. Previous studies dealt with the evaluation of 44Sc-appended avb3 integrin-affine Arg-Gly-Asp (RGD) tripeptides, GRPR-selective aminobenzoyl-bombesin analogue (AMBA), and hypoxia-associated nitroimidazole derivatives in the identification of various cancers using experimental tumour models. Given the tumour-related hypoxia- and angiogenesis-targeting capability of these PET probes, 44Sc seems to be a strong competitor of the currently used positron emitters in radiotracer development. In this review, we summarize the preliminary preclinical achievements with 44Sc-labelled angiogenesis-specific molecular probes.


Asunto(s)
Radioisótopos , Factor A de Crecimiento Endotelial Vascular , Humanos , Estudios de Factibilidad , Bombesina , Receptores de Bombesina/metabolismo , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Galio , Neovascularización Patológica/diagnóstico por imagen
5.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628856

RESUMEN

Angiogenesis plays a crucial role in tumour progression and metastatic spread; therefore, the development of specific vectors targeting angiogenesis has attracted the attention of several researchers. Since angiogenesis-associated aminopeptidase N (APN/CD13) is highly expressed on the surface of activated endothelial cells of new blood vessels and a wide range of tumour cells, it holds great promise for imaging and therapy in the field of cancer medicine. The selective binding capability of asparagine-glycine-arginine (NGR) motif containing molecules to APN/CD13 makes radiolabelled NGR peptides promising radiopharmaceuticals for the non-invasive, real-time imaging of APN/CD13 overexpressing malignancies at the molecular level. Preclinical small animal model systems are major keystones for the evaluation of the in vivo imaging behaviour of radiolabelled NGR derivatives. Based on existing literature data, several positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radioisotopes have been applied so far for the labelling of tumour vasculature homing NGR sequences such as Gallium-68 (68Ga), Copper-64 (64Cu), Technetium-99m (99mTc), Lutetium-177 (177Lu), Rhenium-188 (188Re), or Bismuth-213 (213Bi). Herein, a comprehensive overview is provided of the recent preclinical experiences with radiolabelled imaging probes targeting angiogenesis.


Asunto(s)
Células Endoteliales , Radiofármacos , Animales , Antígenos CD13 , Fenómenos Fisiológicos Cardiovasculares , Modelos Animales de Enfermedad
6.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108106

RESUMEN

As malignancies still represent one of the major health concerns worldwide, early tumor identification is among the priorities of today's science. Given the strong association between cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2), PGE2 receptors (EPs), and carcinogenesis, target-specific molecules directed towards the components of the COX2/PGE2/EP axis seem to be promising imaging probes in the diagnostics of PGE2pos. neoplasms and in the design of anti-cancer drugs. Featured with outstanding inclusion forming capability, ß-cyclodextrins (CDs) including randomly methylated ß-CD (RAMEB) were reported to complex with PGE2. Therefore, radiolabelled ß-CDs could be valuable vectors in the molecular imaging of PGE2-related tumorigenesis. In vivo preclinical small animal model systems applying positron emission tomography (PET) ensure a well-suited scenario for the assessment of PGE2-affine labelled CD derivatives. Previous translational studies dealt with the evaluation of the tumor-homing capability of Gallium-68 (68Ga) and Bismuth-205/206 (205/206Bi)-appended ß-CD compounds conjugated with chelator NODAGA or DOTAGA: [68Ga]Ga-NODAGA-2-hydroxypropyl-ß-cyclodextrin/HPBCD, [68Ga]Ga-NODAGA-RAMEB, [68Ga]Ga-DOTAGA-RAMEB, and [205/206Bi]Bi-DOTAGA-RAMEB in experimental tumors with different PGE2 expression. These imaging probes project the establishment of tailor-made PET diagnostics of PGE2pos. malignancies. In the present review, we provide a detailed overview of the in vivo investigations of radiolabelled PGE2-directed CDs, highlighting the importance of the integration of translational discoveries into routine clinical usage.


Asunto(s)
Neoplasias , beta-Ciclodextrinas , Animales , Radioisótopos de Galio/metabolismo , Dinoprostona/metabolismo , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo
7.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108742

RESUMEN

Electrospinning has recently been recognized as a potential method for use in biomedical applications such as nanofiber-based drug delivery or tissue engineering scaffolds. The present study aimed to demonstrate the electrospinning preparation and suitability of ß-tricalcium phosphate-modified aerogel containing polyvinyl alcohol/chitosan fibrous meshes (BTCP-AE-FMs) for bone regeneration under in vitro and in vivo conditions. The mesh physicochemical properties included a 147 ± 50 nm fibrous structure, in aqueous media the contact angles were 64.1 ± 1.7°, and it released Ca, P, and Si. The viability of dental pulp stem cells on the BTCP-AE-FM was proven by an alamarBlue assay and with a scanning electron microscope. Critical-size calvarial defects in rats were performed as in vivo experiments to investigate the influence of meshes on bone regeneration. PET imaging using 18F-sodium fluoride standardized uptake values (SUVs) detected 7.40 ± 1.03 using polyvinyl alcohol/chitosan fibrous meshes (FMs) while 10.72 ± 1.11 with BTCP-AE-FMs after 6 months. New bone formations were confirmed by histological analysis. Despite a slight change in the morphology of the mesh because of cross-linking, the BTCP-AE-FM basically retained its fibrous, porous structure and hydrophilic and biocompatible character. Our experiments proved that hybrid nanospun scaffold composite mesh could be a new experimental bone substitute bioactive material in future medical practice.


Asunto(s)
Quitosano , Ratas , Animales , Quitosano/química , Alcohol Polivinílico/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Regeneración Ósea , Materiales Dentales , Materiales Biocompatibles/química
8.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897774

RESUMEN

Recently, morphological impairments have been detected in the brain of a triple-hit rat schizophrenia model (Wisket), and delayed depressive effects of caffeine treatment in both control and Wisket animals have also been shown. The aims of this study were to determine the basal and caffeine-induced acute (30 min) and delayed (24 h) changes in the cerebral 18fluorodeoxyglucose (18F-FDG) uptake by positron emission tomography (PET) in control and Wisket rats. No significant differences were identified in the basal whole-brain metabolism between the two groups, and the metabolism was not modified acutely by a single intraperitoneal caffeine (20 mg/kg) injection in either group. However, one day after caffeine administration, significantly enhanced 18F-FDG uptake was detected in the whole brain and the investigated areas (hippocampus, striatum, thalamus, and hypothalamus) in the control group. Although the Wisket animals showed only moderate enhancements in the 18F-FDG uptake, significantly lower brain metabolism was observed in this group than in the caffeine-treated control group. This study highlights that the basal brain metabolism of Wisket animals was similar to control rats, and that was not influenced acutely by single caffeine treatment at the whole-brain level. Nevertheless, the distinct delayed responsiveness to this psychostimulant in Wisket model rats suggests impaired control of the cerebral metabolism.


Asunto(s)
Fluorodesoxiglucosa F18 , Esquizofrenia , Animales , Encéfalo/metabolismo , Cafeína/metabolismo , Cafeína/farmacología , Fluorodesoxiglucosa F18/metabolismo , Tomografía de Emisión de Positrones , Ratas , Esquizofrenia/inducido químicamente , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/metabolismo
9.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36430429

RESUMEN

Aluminum (Al) excess and hypercholesterinaemia are established risks of Alzheimer's disease (AD). The aim of this study was to establish an AD-resembling hypercholesterinaemic animal model-with the involvement of 8 week and 48 week-old Fischer-344 rats-by Al administration for the safe and rapid verification of ß-amyloid-targeted positron emission tomography (PET) radiopharmaceuticals. Measurement of lipid parameters and ß-amyloid-affine [11C]C-Pittsburgh Compound B ([11C]C-PIB) PET examinations were performed. Compared with the control, the significantly elevated cholesterol and LDL levels of the rats receiving the cholesterol-rich diet support the development of hypercholesterinaemia (p ≤ 0.01). In the older cohort, a notably increased age-related radiopharmaceutical accumulation was registered compared to in the young (p ≤ 0.05; p ≤ 0.01). A monotherapy-induced slight elevation of mean standardised uptake values (SUVmean) was statistically not significant; however, adult rats administered a combined diet expressed remarkable SUVmean increment compared to the adult control (SUVmean: from 0.78 ± 0.16 to 1.99 ± 0.28). One and two months after restoration to normal diet, the cerebral [11C]C-PIB accumulation of AD-mimicking animals decreased by half and a third, respectively, to the baseline value. The proposed in vivo Al-induced AD-resembling animal system seems to be adequate for the understanding of AD neuropathology and future drug testing and radiopharmaceutical development.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Ratas , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Aluminio/toxicidad , Radiofármacos , Tomografía de Emisión de Positrones/métodos
10.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361850

RESUMEN

Given the rising prevalence of lipid metabolic disorders and malignant diseases, we aimed to establish an in vivo hypercholesterinaemic tumour-bearing rat model for the induction and assessment of these conditions. A normal standard CRLT/N, 2 (baseline),- or 4 (2 + 2, pretreated)-week-long butter and cholesterol rich (BCR) diet was applied to mesoblastic nephroma (Ne/De) and myelomonoblastic leukaemia (My1/De) tumour-bearing and healthy control Long­Evans and Fischer 344 rats. The beginning of chow administration started in parallel with tumour induction and the 2 weeks of pre-transplantation in the baseline and pretreated groups, respectively. Fourteen days post-inoculation, the measurement of lipid parameters and [18F]F-FDG PET/MRI examinations was executed. The comparable lipid status of baseline healthy and tumorous rats proves that regardless of tumour presence, BCR-based hypercholesterolemia was achieved. A higher tumour mass among pretreated tumorous animals was found when compared to the control groups (p < 0.05, p < 0.01). Further, a visually greater [18F]F-FDG accumulation was observed in pretreated BCR tumorous animals; however, the quantitative data (SUVmean: 9.86 ± 0.98, 9.68 ± 1.24; SUVmax: 19.63 ± 1.20; 17.56 ± 3.21 for Ne/De and My1/De, respectively) were not statistically significantly different from those of the CRLT/N tumorous rats (SUVmean: 8.40 ± 1.42, 7.22 ± 1.06 and SUVmax: 15.99 ± 2.22, 12.46 ± 1.96 for control Ne/De and My1/De, respectively). Our model seems to be appropriate for simultaneously investigating hypercholesterolemia and cancer in the same rat.


Asunto(s)
Hipercolesterolemia , Neoplasias Renales , Leucemia , Nefroma Mesoblástico , Animales , Ratas , Fluorodesoxiglucosa F18 , Ratas Long-Evans , Tomografía de Emisión de Positrones , Neoplasias Renales/diagnóstico por imagen , Lípidos , Radiofármacos , Tomografía Computarizada por Tomografía de Emisión de Positrones
11.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077458

RESUMEN

Gastrin-releasing peptide receptors (GRPR) are overexpressed in prostate cancer (PCa). Since bombesin analogue aminobenzoic-acid (AMBA) binds to GRPR with high affinity, scandium-44 conjugated AMBA is a promising radiotracer in the PET diagnostics of GRPR positive tumors. Herein, the GRPR specificity of the newly synthetized [44Sc]Sc-NODAGA-AMBA was investigated in vitro and in vivo applying PCa PC-3 xenograft. After the in-vitro assessment of receptor binding, PC-3 tumor-bearing mice were injected with [44Sc]Sc/[68Ga]Ga-NODAGA-AMBA (in blocking studies with bombesin) and in-vivo PET examinations were performed to determine the radiotracer uptake in standardized uptake values (SUV). 44Sc/68Ga-labelled NODAGA-AMBA was produced with high molar activity (approx. 20 GBq/µmoL) and excellent radiochemical purity. The in-vitro accumulation of [44Sc]Sc-NODAGA-AMBA in PC-3 cells was approximately 25-fold higher than that of the control HaCaT cells. Relatively higher uptake was found in vitro, ex vivo, and in vivo in the same tumor with the 44Sc-labelled probe compared to [68Ga]Ga-NODAGA-AMBA. The GRPR specificity of [44Sc]Sc-NODAGA-AMBA was confirmed by significantly (p ≤ 0.01) decreased %ID and SUV values in PC-3 tumors after bombesin pretreatment. The outstanding binding properties of the novel [44Sc]Sc-NODAGA-AMBA to GRPR outlines its potential to be a valuable radiotracer in the imaging of GRPR-positive PCa.


Asunto(s)
Neoplasias de la Próstata , Receptores de Bombesina , Acetatos , Animales , Bombesina , Línea Celular Tumoral , Radioisótopos de Galio , Compuestos Heterocíclicos con 1 Anillo , Humanos , Masculino , Ratones , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/metabolismo , Receptores de Bombesina/metabolismo
12.
Angew Chem Int Ed Engl ; 61(43): e202207120, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36073561

RESUMEN

Targeted α therapy (TAT) is a promising tool in the therapy of cancer. The radionuclide 213 BiIII shows favourable physical properties for this application, but the fast and stable chelation of this metal ion remains challenging. Herein, we demonstrate that the mesocyclic chelator AAZTA quickly coordinates BiIII at room temperature, leading to a robust complex. A comprehensive study of the structural, thermodynamic and kinetic properties of [Bi(AAZTA)]- is reported, along with bifunctional [Bi(AAZTA-C4-COO- )]2- and the targeted agent [Bi(AAZTA-C4-TATE)]- , which incorporates the SSR agonist Tyr3 -octreotate. An unexpected increase in the stability and kinetic inertness of the metal chelate was observed for the bifunctional derivative and was maintained for the peptide conjugate. A cyclotron-produced 205/206 Bi mixture was used as a model of 213 Bi in labelling, stability, and biodistribution experiments, allowing the efficiency of [213 Bi(AAZTA-C4-TATE)]- to be estimated. High accumulation in AR42J tumours and reduced kidney uptake were observed with respect to the macrocyclic chelate [213 Bi(DOTA-TATE)]- .


Asunto(s)
Bismuto , Quelantes , Quelantes/química , Bismuto/química , Distribución Tisular , Radioisótopos/uso terapéutico , Radioisótopos de Galio , Radiofármacos/uso terapéutico
13.
AAPS PharmSciTech ; 22(5): 187, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155595

RESUMEN

Several drugs have poor oral bioavailability due to low or incomplete absorption which is affected by various effects as pH, motility of GI, and enzyme activity. The gastroretentive drug delivery systems are able to deal with these problems by prolonging the gastric residence time, while increasing the therapeutic efficacy of drugs. Previously, we developed a novel technology to foam hot and molten dispersions on atmospheric pressure by a batch-type in-house apparatus. Our aim was to upgrade this technology by a new continuous lab-scale apparatus and confirm that our formulations are gastroretentive. At first, we designed and built the apparatus and continuous production was optimized using a Box-Behnken experimental design. Then, we formulated barium sulfate-loaded samples with the optimal production parameters, which was suitable for in vivo imaging analysis. In vitro study proved the low density, namely 507 mg/cm3, and the microCT record showed high porosity with 40 µm average size of bubbles in the molten suspension. The BaSO4-loaded samples showed hard structure at room temperature and during the wetting test, the complete wetting was detected after 120 min. During the in vivo study, the X-ray taken showed the retention of the formulation in the rat stomach after 2 h. We can conclude that with our device low-density floating formulations were prepared with prolonged gastric residence time. This study provides a promising platform for marketed active ingredients with low bioavailability.


Asunto(s)
Sulfato de Bario/síntesis química , Sulfato de Bario/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Absorción Gastrointestinal/efectos de los fármacos , Animales , Sulfato de Bario/administración & dosificación , Disponibilidad Biológica , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/síntesis química , Preparaciones de Acción Retardada/farmacocinética , Formas de Dosificación , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Absorción Gastrointestinal/fisiología , Masculino , Porosidad , Ratas , Ratas Endogámicas F344
14.
J Am Chem Soc ; 142(4): 1662-1666, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31927927

RESUMEN

Smart/intelligent contrast agent candidates for MRI based on Mn(II) ion are rare, as it usually forms labile complexes with polyaminocarboxylate-type ligands. Here, we report the first example of a Mn(II) complex that can be activated by changing the pH of its local environment. The PC2A-EA ligand with an ethylamine pendant arm was found to form a thermodynamically stable (log KMnL = 19.01, pMn = 9.27) and kinetically inert complex with Mn(II) with respect to trans-chelation with a metal ion such as Cu(II). The [MnH(PCA2-EA)] complex displays a relatively slow water exchange rate ((4.0 ± 0.2) × 107 s-1), but the pH-dependent coordination of the ethylamine moiety occurs in the pH range of 6-8 (log KMnLH = 6.88), enabling the complex to exhibit pH-sensitive relaxivity in the biologically relevant pH range.


Asunto(s)
Medios de Contraste/química , Concentración de Iones de Hidrógeno , Manganeso/química , Quelantes/química , Ligandos , Imagen por Resonancia Magnética/métodos
15.
Arterioscler Thromb Vasc Biol ; 39(6): 1088-1099, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31070451

RESUMEN

Objective- Vascular calcification is associated with high risk of cardiovascular events and mortality. Osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) is the major cellular mechanism underlying vascular calcification. Because tissue hypoxia is a common denominator in vascular calcification, we investigated whether hypoxia per se triggers osteochondrogenic differentiation of VSMCs. Approach and Results- We studied osteochondrogenic differentiation of human aorta VSMCs cultured under normoxic (21% O2) and hypoxic (5% O2) conditions. Hypoxia increased protein expression of HIF (hypoxia-inducible factor)-1α and its target genes GLUT1 (glucose transporter 1) and VEGFA (vascular endothelial growth factor A) and induced mRNA and protein expressions of osteochondrogenic markers, that is, RUNX2 (runt-related transcription factor 2), SOX9 (Sry-related HMG box-9), OCN (osteocalcin) and ALP (alkaline phosphatase), and induced a time-dependent calcification of the extracellular matrix of VSMCs. HIF-1 inhibition by chetomin abrogated the effect of hypoxia on osteochondrogenic markers and abolished extracellular matrix calcification. Hypoxia triggered the production of reactive oxygen species, which was inhibited by chetomin. Scavenging reactive oxygen species by N-acetyl cysteine attenuated hypoxia-mediated upregulation of HIF-1α, RUNX2, and OCN protein expressions and inhibited extracellular matrix calcification, which effect was mimicked by a specific hydrogen peroxide scavenger sodium pyruvate and a mitochondrial reactive oxygen species inhibitor rotenone. Ex vivo culture of mice aorta under hypoxic conditions triggered calcification which was inhibited by chetomin and N-acetyl cysteine. In vivo hypoxia exposure (10% O2) increased RUNX2 mRNA levels in mice lung and the aorta. Conclusions- Hypoxia contributes to vascular calcification through the induction of osteochondrogenic differentiation of VSMCs in an HIF-1-dependent and mitochondria-derived reactive oxygen species-dependent manner.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Factor 1 Inducible por Hipoxia/genética , Hipoxia/complicaciones , Especies Reactivas de Oxígeno/metabolismo , Calcificación Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Disulfuros/farmacología , Femenino , Regulación de la Expresión Génica , Humanos , Alcaloides Indólicos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , ARN Mensajero/genética , Distribución Aleatoria , Valores de Referencia , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Calcificación Vascular/fisiopatología
16.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679833

RESUMEN

The inhibition of cancer-related carbonic anhydrase (CA) activity is a promising way to intensify anti-tumor responses. In vitro data suggest improved efficacy of cytotoxic drugs in combination with CA-inhibitors in several cancer types. Despite accumulating data on CA-expression, experimental or clinical studies towards B-cell lymphoma therapy are missing. We therefore decided to test the effect of the CA-inhibitor acetazolamide (AA) on the conventional CHOP treatment regimen using the A20/BalbC in vivo syngeneic mouse lymphoma model. Tumor growth characteristics, 18F-MISO-PET activity, histomorphology, cell proliferation, and T-cell immune infiltrate were determined following single or multiple dose combinations. All results point to a significant increase in the anti-tumor effect of CHOP+AA combinations compared with the untreated controls or with the single CHOP or AA treatments. CD3+ and CD8+ T-cell immune infiltrate increased 3-4 times following CHOP+AA combination compared with the classical CHOP protocol. In conclusion, CA-inhibitor AA seems to act synergistically with the anti-tumor treatment CHOP in aggressive lymphoma. Further to a cytotoxic effect, AA and other more selective blockers potentially support tumor-associated immune responses through the modification of the microenvironment. Therefore, CA-inhibitors are promising candidates as adjuvants in support of specific immunotherapies in lymphoma and other malignancies.


Asunto(s)
Acetazolamida/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Linfoma de Células B/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Sinergismo Farmacológico , Linfoma de Células B/inmunología , Masculino , Ratones Endogámicos BALB C , Prednisona/uso terapéutico , Linfocitos T/inmunología , Vincristina/uso terapéutico
17.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32635347

RESUMEN

Hemoglobin, heme and iron are implicated in the progression of atherosclerosis. Therefore, we investigated whether the hydrophobic fungal iron chelator siderophore, desferricoprogen (DFC) inhibits atherosclerosis. DFC reduced atherosclerotic plaque formation in ApoE-/- mice on an atherogenic diet. It lowered the plasma level of oxidized LDL (oxLDL) and inhibited lipid peroxidation in aortic roots. The elevated collagen/elastin content and enhanced expression of adhesion molecule VCAM-1 were decreased. DFC diminished oxidation of Low-density Lipoprotein (LDL) and plaque lipids catalyzed by heme or hemoglobin. Formation of foam cells, uptake of oxLDL by macrophages, upregulation of CD36 and increased expression of TNF-α were reduced by DFC in macrophages. TNF-triggered endothelial cell activation (vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecules (ICAMs), E-selectin) and increased adhesion of monocytes to endothelium were attenuated. The increased endothelial permeability and intracellular gap formation provoked by TNF-α was also prevented by DFC. DFC acted as a cytoprotectant in endothelial cells and macrophages challenged with a lethal dose of oxLDL and lowered the expression of stress-responsive heme oxygenase-1 as sublethal dose was employed. Saturation of desferrisiderophore with iron led to the loss of the beneficial effects. We demonstrated that DFC accumulated within the atheromas of the aorta in ApoE-/- mice. DFC represents a novel therapeutic approach to control the progression of atherosclerosis.


Asunto(s)
Dicetopiperazinas/farmacología , Ácidos Hidroxámicos/farmacología , Placa Aterosclerótica/prevención & control , Sideróforos/farmacología , Animales , Aorta/diagnóstico por imagen , Aorta/efectos de los fármacos , Aorta/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/patología , Dieta Aterogénica , Dicetopiperazinas/farmacocinética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Espumosas/efectos de los fármacos , Células Espumosas/patología , Hemo/metabolismo , Ácidos Hidroxámicos/farmacocinética , Peroxidación de Lípido/efectos de los fármacos , Lipoproteínas LDL/metabolismo , Activación de Macrófagos/efectos de los fármacos , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Neurospora crassa/química , Estrés Oxidativo/efectos de los fármacos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Tomografía de Emisión de Positrones , Sideróforos/farmacocinética
18.
AAPS PharmSciTech ; 20(7): 290, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31428895

RESUMEN

Dosage forms with increased gastric residence time are promising tools to increase bioavailability of drugs with narrow absorption window. Low-density floating formulations could avoid gastric emptying; therefore, sustained drug release can be achieved. Our aim was to develop a new technology to produce low-density floating formulations by melt foaming. Excipients were selected carefully, with the criteria of low gastric irritation, melting range below 70°C and well-known use in oral drug formulations. PEG 4000, Labrasol and stearic acid type 50 were used to create metronidazole dispersion which was foamed by air on atmospheric pressure using in-house developed apparatus at 53°C. Stearic acid was necessary to improve the foamability of the molten dispersion. Additionally, it reduced matrix erosion, thus prolonging drug dissolution and preserving hardness of the moulded foam. Labrasol as a liquid solubiliser can be used to increase drug release rate and drug solubility. Based on the SEM images, metronidazole in the molten foam remained in crystalline form. MicroCT scans with the electron microscopic images revealed that the foam has a closed-cell structure, where spherical voids have smooth inner wall, they are randomly dispersed, while adjacent voids often interconnected with each other. Drug release from all compositions followed Korsmeyer-Peppas kinetic model. Erosion of the matrix was the main mechanism of the release of metronidazole. Texture analysis confirmed that stearic acid plays a key role in preserving the integrity of the matrix during dissolution in acidic buffer. The technology creates low density and solid matrix system with micronsized air-filled voids.


Asunto(s)
Formas de Dosificación , Calor , Metronidazol/química , Estómago , Disponibilidad Biológica , Preparaciones de Acción Retardada , Composición de Medicamentos , Liberación de Fármacos , Excipientes/química , Vaciamiento Gástrico , Metronidazol/farmacocinética , Solubilidad , Ácidos Esteáricos/química
19.
Biochim Biophys Acta Bioenerg ; 1859(9): 958-974, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29655782

RESUMEN

Our study aimed at finding a mechanistic relationship between the gut microbiome and breast cancer. Breast cancer cells are not in direct contact with these microbes, but disease could be influenced by bacterial metabolites including secondary bile acids that are exclusively synthesized by the microbiome and known to enter the human circulation. In murine and bench experiments, a secondary bile acid, lithocholic acid (LCA) in concentrations corresponding to its tissue reference concentrations (< 1 µM), reduced cancer cell proliferation (by 10-20%) and VEGF production (by 37%), aggressiveness and metastatic potential of primary tumors through inducing mesenchymal-to-epithelial transition, increased antitumor immune response, OXPHOS and the TCA cycle. Part of these effects was due to activation of TGR5 by LCA. Early stage breast cancer patients, versus control women, had reduced serum LCA levels, reduced chenodeoxycholic acid to LCA ratio, and reduced abundance of the baiH (7α/ß-hydroxysteroid dehydroxylase, the key enzyme in LCA generation) gene in fecal DNA, all suggesting reduced microbial generation of LCA in early breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Bacterias/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Detergentes/farmacología , Ácido Litocólico/farmacología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Physiol ; 595(17): 5815-5842, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28714082

RESUMEN

KEY POINTS: The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. ABSTRACT: Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6Chigh ) to a repair (Ly6Clow ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics.


Asunto(s)
Macrófagos/inmunología , Músculo Esquelético , Traumatismos Experimentales por Radiación/inmunología , Animales , Trasplante de Médula Ósea , Cardiotoxinas , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/inmunología , Músculo Esquelético/lesiones , Músculo Esquelético/efectos de la radiación , Fenotipo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Traumatismos Experimentales por Radiación/diagnóstico por imagen , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA