Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Bioscience ; 74(4): 253-268, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38720908

RESUMEN

Managing coastal wetlands is one of the most promising activities to reduce atmospheric greenhouse gases, and it also contributes to meeting the United Nations Sustainable Development Goals. One of the options is through blue carbon projects, in which mangroves, saltmarshes, and seagrass are managed to increase carbon sequestration and reduce greenhouse gas emissions. However, other tidal wetlands align with the characteristics of blue carbon. These wetlands are called tidal freshwater wetlands in the United States, supratidal wetlands in Australia, transitional forests in Southeast Asia, and estuarine forests in South Africa. They have similar or larger potential for atmospheric carbon sequestration and emission reductions than the currently considered blue carbon ecosystems and have been highly exploited. In the present article, we suggest that all wetlands directly or indirectly influenced by tides should be considered blue carbon. Their protection and restoration through carbon offsets could reduce emissions while providing multiple cobenefits, including biodiversity.

2.
J Environ Manage ; 367: 122006, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094414

RESUMEN

Blue carbon ecosystems (BCEs), such as mangroves, saltmarshes, and seagrasses, are important nature-based solutions for climate change mitigation and adaptation but are threatened by degradation. Effective BCE restoration requires strategic planning and site selection to optimise outcomes. We developed a Geographic Information System (GIS)-based multi-criteria decision support tool to identify suitable areas for BCE restoration along the 2512 km-long coastline of Victoria, Australia. High-resolution spatial data on BCE distribution, coastal geomorphology, hydrodynamics, and land tenure were integrated into a flexible spatial model that distinguishes between passive and active restoration suitability. The tool was applied to identify high-priority locations for mangrove, saltmarsh, and seagrass restoration across different scenarios. Results indicate substantial potential for BCE restoration in Victoria, with 33,253 ha of suitable area identified, mostly (>97%) on public land, which aligned with the selection criteria used in the tool. Restoration opportunities are concentrated in bays and estuaries where historical losses have been significant. The mapped outputs provide a decision-support framework for regional restoration planning, while the tool itself can be adapted to other geographies. By integrating multiple spatial criteria and distinguishing between passive and active restoration, our approach offers a new method for targeting BCE restoration and informing resource allocation. The identified restoration potential will also require collaboration with coastal managers and communities, and consideration of socio-economic factors. With further refinements, such as incorporating multi-criteria decision analysis techniques, GIS-based tools can help catalyse strategic blue carbon investments and contribute to climate change mitigation and adaptation goals at different spatial scales. This study highlights the value of spatial identification for BCE restoration and provides a transferable framework for other regions.


Asunto(s)
Carbono , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Carbono/química , Técnicas de Apoyo para la Decisión , Humedales , Sistemas de Información Geográfica , Victoria
3.
Glob Chang Biol ; 29(17): 4731-4749, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37435759

RESUMEN

Climate change is fundamentally altering marine and coastal ecosystems on a global scale. While the effects of ocean warming and acidification on ecology and ecosystem functions and services are being comprehensively researched, less attention is directed toward understanding the impacts of human-driven ocean salinity changes. The global water cycle operates through water fluxes expressed as precipitation, evaporation, and freshwater runoff from land. Changes to these in turn modulate ocean salinity and shape the marine and coastal environment by affecting ocean currents, stratification, oxygen saturation, and sea level rise. Besides the direct impact on ocean physical processes, salinity changes impact ocean biological functions with the ecophysiological consequences are being poorly understood. This is surprising as salinity changes may impact diversity, ecosystem and habitat structure loss, and community shifts including trophic cascades. Climate model future projections (of end of the century salinity changes) indicate magnitudes that lead to modification of open ocean plankton community structure and habitat suitability of coral reef communities. Such salinity changes are also capable of affecting the diversity and metabolic capacity of coastal microorganisms and impairing the photosynthetic capacity of (coastal and open ocean) phytoplankton, macroalgae, and seagrass, with downstream ramifications on global biogeochemical cycling. The scarcity of comprehensive salinity data in dynamic coastal regions warrants additional attention. Such datasets are crucial to quantify salinity-based ecosystem function relationships and project such changes that ultimately link into carbon sequestration and freshwater as well as food availability to human populations around the globe. It is critical to integrate vigorous high-quality salinity data with interacting key environmental parameters (e.g., temperature, nutrients, oxygen) for a comprehensive understanding of anthropogenically induced marine changes and its impact on human health and the global economy.


Asunto(s)
Organismos Acuáticos , Ecosistema , Humanos , Salinidad , Cambio Climático , Arrecifes de Coral , Agua de Mar/química
4.
Environ Res ; 212(Pt B): 113280, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35430277

RESUMEN

Coastal pollution, including nutrient loading, can negatively impact seagrass health and cover and may consequently alter soil organic carbon (SOC) accumulation and preservation. Key to understanding how eutrophication impacts SOC cycling in seagrass ecosystems is how nutrient loading changes the sources of carbon being deposited and how these changes in resources, both nutrients and carbon availability, influence soil microbiota community and activity. Currently, the direction and magnitude of nutrient loading impacts on seagrass SOC dynamics are poorly understood at a meadow scale, limiting our ability to reveal the driving mechanisms of SOC remineralisation. The purpose of this study was to assess the response of surface SOC and soil microbiomes to nutrient loading within tropical seagrass meadows. To achieve this, we quantified both total SOC and recalcitrant soil organic carbon (RSOC) concentrations and sources, in addition to the composition of bacterial and fungal communities and soil extracellular enzyme activities. We found that nutrient loading elevated SOC and RSOC content, mainly facilitated by enhanced algal growth. There was no nutrient effect on the soil prokaryotic communities, however, saprotrophic fungi groups (i.e. Trapeliales, Sordaridales, Saccharomycetales and Polyporales) and fungal activities were elevated under high nutrient conditions, including extracellular enzyme activities linked to seagrass-based cellulose and lignin decomposition. This relative increase in RSOC transformation may decrease the relative contribution of seagrass carbon to RSOC pools. Additionally, significantly different fungal communities were observed between adjacent T. hemprichii and E. acoroides areas, which coincided with elevated RSOC-decomposing enzyme activity in T. hemprichii meadows, even though the mixed seagrass meadow received allochthonous SOC and RSOC from the same sources. These results suggest that nutrient loading stimulated fungal activity and community shifts specific to the local seagrass species, thereby causing fine-scale (within-meadow) variability in SOC cycling in response to nutrient loading. This study provides evidence that fungal composition and activity, mediated by human activities (e.g. nutrient loading), can be an important influence on seagrass blue carbon accumulation and remineralisation.


Asunto(s)
Carbono , Microbiota , Ecosistema , Hongos , Sedimentos Geológicos , Humanos , Nutrientes , Suelo
5.
J Environ Manage ; 306: 114301, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032938

RESUMEN

The restoration of blue carbon ecosystems, such as mangrove forests, is increasingly used as a management tool to mitigate climate change by removing and sequestering atmospheric carbon in the ground. However, estimates of carbon-offset potential are currently based on data from natural mangrove forests, potentially leading to overestimating the carbon-offset potential from restored mangroves. Here, in the first study of its kind, we utilise 210Pb sediment age-dating techniques and greenhouse gas flux measures to estimate blue carbon additionality in restored mangrove forests, ranging from 13 to 35 years old. As expected, mangrove age had a significant effect on carbon additionality and carbon accretion rate, with the older mangrove stands (17 and 35 years old) holding double the total carbon stocks (aboveground + soil stocks; ∼115 tonnes C ha-1) and double the soil sequestration rates (∼3 tonnes C ha-1 yr-1) than the youngest mangrove stand (13 years old). Although soil carbon stocks increased with mangrove age, the aboveground plant stocks were highest in the 17-year-old stand. Mangrove age also had a significant effect on soil carbon fluxes, with the older mangroves (≥17 years) releasing one-fourth of the CH4 emissions, but double the CO2 flux compared to young stands. Our study suggests that the carbon sink capacity of restored mangrove forests increases with age, but stabilises once they mature (e.g., >17 years). This means that by using carbon sequestration and emissions from natural forests, mangrove restoration projects may be overestimating their carbon sequestration potential.


Asunto(s)
Carbono , Humedales , Secuestro de Carbono , Ecosistema , Bosques , Suelo
6.
Microb Ecol ; 82(2): 498-511, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33410934

RESUMEN

Labyrinthula spp. are saprobic, marine protists that also act as opportunistic pathogens and are the causative agents of seagrass wasting disease (SWD). Despite the threat of local- and large-scale SWD outbreaks, there are currently gaps in our understanding of the drivers of SWD, particularly surrounding Labyrinthula spp. virulence and ecology. Given these uncertainties, we investigated the Labyrinthula genus from a novel genomic perspective by presenting the first draft genome and predicted proteome of a pathogenic isolate Labyrinthula SR_Ha_C, generated from a hybrid assembly of Nanopore and Illumina sequences. Phylogenetic and cross-phyla comparisons revealed insights into the evolutionary history of Stramenopiles. Genome annotation showed evidence of glideosome-type machinery and an apicoplast protein typically found in protist pathogens and parasites. Proteins involved in Labyrinthula SR_Ha_C's actin-myosin mode of transport, as well as carbohydrate degradation were also prevalent. Further, CAZyme functional predictions revealed a repertoire of enzymes involved in breakdown of cell-wall and carbohydrate storage compounds common to seagrasses. The relatively low number of CAZymes annotated from the genome of Labyrinthula SR_Ha_C compared to other Labyrinthulea species may reflect the conservative annotation parameters, a specialized substrate affinity and the scarcity of characterized protist enzymes. Inherently, there is high probability for finding both unique and novel enzymes from Labyrinthula spp. This study provides resources for further exploration of Labyrinthula spp. ecology and evolution, and will hopefully be the catalyst for new hypothesis-driven SWD research revealing more details of molecular interactions between the Labyrinthula genus and its host substrate.


Asunto(s)
Estramenopilos , Ecología , Filogenia , Virulencia
7.
Environ Sci Technol ; 54(22): 14750-14760, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33103882

RESUMEN

Intensive macroalgal blooms, a source of labile organic carbon (LOC) induced by coastal nutrient loading in some seagrass ecosystems, create ideal conditions for enhanced recalcitrant organic carbon (ROC) loss via the cometabolism effect. Here, we carried out a 62-day laboratory experiment to see if density-dependent addition of macroalgal biomass can influence the seagrass decomposition process, including seagrass detritus carbon chemistry, greenhouse emissions, and bacterial communities. We found that higher density macroalgal addition stimulated microbes to decompose ∼20% more of the seagrass biomass compared to other treatments, which was also reflected in enhanced (∼twofold) greenhouse gas emissions. Although the composition of the seagrass-associated microbiome communities was unaffected by the addition of macroalgae, we showed that high macroalgal addition caused a relative depletion in the ROC as lignin and lipid compounds, as well as δ13C depletion and δ15N enrichment of the seagrass detritus. These results suggest that macroalgal blooms may stimulate the remineralization of recalcitrant components of seagrass detritus via cometabolism, possibly through providing available energy or resources for the synthesis of ROC-degrading enzymes within the resident microbial population. This study provides evidence that cometabolism can be a mechanism for leading to reduced seagrass blue carbon sequestration and preservation.


Asunto(s)
Carbono , Algas Marinas , Biomasa , Secuestro de Carbono , Ecosistema
8.
J Environ Manage ; 256: 109971, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31989987

RESUMEN

Wetland ecosystems have a disproportionally large influence on the global carbon cycle. They can act as carbon sinks or sources depending upon their location, type, and condition. Rehabilitation of wetlands is gaining popularity as a nature-based approach to helping mitigate climate change; however, few studies have empirically tested the carbon benefits of wetland restoration, especially in freshwater environments. Here we investigated the effects of passive rehabilitation (i.e. fencing and agricultural release) of 16 semi-arid rain-filled freshwater wetlands in southeastern Australia. Eight control sites were compared with older (>10 year) or newer (2-5 year) rehabilitated sites, dominated by graminoids or eucalypts. Carbon stocks (soils and plant biomass), and emissions (carbon dioxide - CO2; and methane - CH4) were sampled across three seasons, representing natural filling and drawdown, and soil microbial communities were sampled in spring. We found no significant difference in soil carbon or greenhouse gas emissions between rehabilitated and control sites, however, plant biomass was significantly higher in older rehabilitated sites. Wetland carbon stocks were 19.21 t Corg ha-1 and 2.84 t Corg ha-1 for soils (top 20 cm; n = 137) and plant biomass (n = 288), respectively. Hydrology was a strong driver of wetland greenhouse gas emissions. Diffusive fluxes (n = 356) averaged 117.63 mmol CO2 m2 d-1 and 2.98 mmol CH4 m2 d-1 when wet, and 124.01 mmol CO2 m2 d-1 and -0.41 mmol CH4 m2 d-1 when dry. Soil microbial community richness was nearly 2-fold higher during the wet phase than the dry phase, including relative increases in Nitrososphaerales, Myxococcales and Koribacteraceae and methanogens Methanobacteriales. Vegetation type significantly influenced soil carbon, aboveground carbon, and greenhouse gas emissions. Overall, our results suggest that passive rehabilitation of rain-filled wetlands, while valuable for biodiversity and habitat provisioning, is ineffective for increasing carbon gains within 20 years. Carbon offsetting opportunities may be better in systems with faster sediment accretion. Active rehabilitation methods, particularly that reinstate the natural hydrology of drained wetlands, should also be considered.


Asunto(s)
Ecosistema , Humedales , Australia , Dióxido de Carbono , Metano , Lluvia , Suelo
9.
J Environ Manage ; 231: 329-335, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366311

RESUMEN

Seagrass ecosystems have received a great deal of attention recently for their ability to capture and store carbon, thereby helping to mitigate climate change. However, their carbon-sink capacity could be offset somewhat if exported plant material - which accounts for ∼90% of total leaf production - undergoes microbial breakdown and is emitted into the atmosphere as a greenhouse gas. Here we measured emissions (CO2 and CH4) from the breakdown of exported seagrass plant material, focusing on beach-cast 'wrack'. We tested two seagrass species; Zostera nigricaulis and Amphibolis antarctica, which have contrasting morphologies and chemistries. We found that both species of wrack were substantial sources of CO2, but not CH4, during the decomposition process. Biomass loss and the coinciding CO2 emissions occurred over the 30-day experiment, and the pattern of CO2 emissions over this time followed a double exponential model (R2 > 0.92). The initial flux rate was relatively high, most likely due to rapid leaching of labile compounds, then decreased substantially within the 2-9 days, and stabilizing at < 3 µmol g-1 d-1 during the remaining decomposition period. Additionally, seagrass wrack cast high up on beaches that remained dry had 72% lower emissions than wrack that was subjected to repeated wetting in the intertidal zone. This implies that relocation of seagrass wrack by coastal resource managers (e.g. from water's edge to drier dune areas) could help to reduce atmospheric CO2 emissions. Scaling up, we estimate the annual CO2-C flux from seagrass wrack globally is between 1.31 and 19.04 Tg C yr-1, which is equivalent to annual emissions of 0.63-9.19 million Chinese citizens. With climate change and increasing coastal development expected to accelerate the rate of wrack accumulation on beaches, this study provides timely information for developing coastal carbon budgets.


Asunto(s)
Gases de Efecto Invernadero , Dióxido de Carbono , Secuestro de Carbono , Ecosistema , Metano
10.
Dis Aquat Organ ; 130(1): 65-70, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154273

RESUMEN

Marine heterotrophic protists of the Labyrinthulomycota are of interest for their biotechnological (e.g. thraustochytrid production of lipids) and ecological (e.g. wasting disease and rapid blight by pathogens of the genus Labyrinthula) applications; culture-based laboratory studies are a central technique of this research. However, maintaining such microorganism cultures can be labour- and cost-intensive, with a high risk of culture contamination and die-off over time. Deep-freeze storage, or cryopreservation, can be used to maintain culture back-ups, as well as to preserve the genetic and phenotypic properties of the microorganisms; however, this method has not been tested for the ubiquitous marine protists Labyrinthula spp. In this study, we trialled 12 cryopreservation protocols on 3 Labyrinthula sp. isolates of varying colony morphological traits. After 6 mo at -80°C storage, the DMSO and glycerol protocols were the most effective cryoprotectants compared to methanol (up to 90% success vs. 50% success, respectively). The addition of 30% horse serum to the cryoprotectant solution increased Labyrinthula sp. growth success by 20-30%. We expect that these protocols will provide extra security for culture-based studies, as well as opportunities for long-term research on key Labyrinthula sp. isolates.


Asunto(s)
Criopreservación/métodos , Estramenopilos/fisiología , Animales , Crioprotectores/farmacología , Dimetilsulfóxido , Glicerol , Caballos , Suero , Manejo de Especímenes , Factores de Tiempo
11.
J Eukaryot Microbiol ; 64(4): 504-513, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28004878

RESUMEN

As a result of anthropogenic influences and global climate change, emerging infectious marine diseases are thought to be increasingly more common and more severe than in the past. The aim of our investigation was to confirm the presence of Labyrinthula, the aetiological agent of the seagrass wasting disease, in Southeastern Australia and provide the first isolation and characterisation of this protist, in Australia. Colonies and individual cells were positively identified as Labyrinthula using published descriptions, diagrams, and photographs. Their identity was then confirmed using DNA barcoding of a region of the 18S rRNA gene. Species level identification of isolates was not possible as the taxonomy of the Labyrinthula is still poorly resolved. Still, a diversity of Labyrinthula was isolated from small sections of the southeast coast of Australia. The isolates were grouped into three haplotypes that are biogeographically restricted. These haplotypes are closely related to previously identified saprotrophic clades. The study highlights the need for further investigation into the global distribution of Labyrinthula, including phylogenetic pathogenicity and analysis of host-parasite interactions in response to stressors. Given the results of our analyses, it is prudent to continue research into disease and epidemic agents to better prepare researchers for potential future outbreaks.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Magnoliopsida/parasitología , Estramenopilos/clasificación , Estramenopilos/aislamiento & purificación , Australia , Cambio Climático , ADN de Algas/genética , ADN Ribosómico/genética , Haplotipos , Interacciones Huésped-Parásitos , Filogenia , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Estramenopilos/genética
13.
Proc Biol Sci ; 282(1817): 20151537, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26490788

RESUMEN

Seagrasses are among the Earth's most efficient and long-term carbon sinks, but coastal development threatens this capacity. We report new evidence that disturbance to seagrass ecosystems causes release of ancient carbon. In a seagrass ecosystem that had been disturbed 50 years ago, we found that soil carbon stocks declined by 72%, which, according to radiocarbon dating, had taken hundreds to thousands of years to accumulate. Disturbed soils harboured different benthic bacterial communities (according to 16S rRNA sequence analysis), with higher proportions of aerobic heterotrophs compared with undisturbed. Fingerprinting of the carbon (via stable isotopes) suggested that the contribution of autochthonous carbon (carbon produced through plant primary production) to the soil carbon pool was less in disturbed areas compared with seagrass and recovered areas. Seagrass areas that had recovered from disturbance had slightly lower (35%) carbon levels than undisturbed, but more than twice as much as the disturbed areas, which is encouraging for restoration efforts. Slow rates of seagrass recovery imply the need to transplant seagrass, rather than waiting for recovery via natural processes. This study empirically demonstrates that disturbance to seagrass ecosystems can cause release of ancient carbon, with potentially major global warming consequences.


Asunto(s)
Alismatales/crecimiento & desarrollo , Alismatales/metabolismo , Carbono/metabolismo , Conservación de los Recursos Naturales , Ecosistema , Bacterias/clasificación , Bacterias/genética , Secuestro de Carbono , Sedimentos Geológicos/química , Nueva Gales del Sur , Océanos y Mares , ARN Ribosómico 16S
14.
Ecology ; 96(11): 3043-57, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27070023

RESUMEN

Many marine ecosystems have the capacity for long-term storage of organic carbon (C) in what are termed "blue carbon" systems. While blue carbon systems (saltmarsh, mangrove, and seagrass) are efficient at long-term sequestration of organic carbon (C), much of their sequestered C may originate from other (allochthonous) habitats. Macroalgae, due to their high rates of production, fragmentation, and ability to be transported, would also appear to be able to make a significant contribution as C donors to blue C habitats. In order to assess the stability of macroalgal tissues and their likely contribution to long-term pools of C, we applied thermogravimetric analysis (TGA) to 14 taxa of marine macroalgae and coastal vascular plants. We assessed the structural complexity of multiple lineages of plant and tissue types with differing cell wall structures and found that decomposition dynamics varied significantly according to differences in cell wall structure and composition among taxonomic groups and tissue function (photosynthetic vs. attachment). Vascular plant tissues generally exhibited greater stability with a greater proportion of mass loss at temperatures > 300 degrees C (peak mass loss -320 degrees C) than macroalgae (peak mass loss between 175-300 degrees C), consistent with the lignocellulose matrix of vascular plants. Greater variation in thermogravimetric signatures within and among macroalgal taxa, relative to vascular plants, was also consistent with the diversity of cell wall structure and composition among groups. Significant degradation above 600 degrees C for some macroalgae, as well as some belowground seagrass tissues, is likely due to the presence of taxon-specific compounds. The results of this study highlight the importance of the lignocellulose matrix to the stability of vascular plant sources and the potentially significant role of refractory, taxon-specific compounds (carbonates, long-chain lipids, alginates, xylans, and sulfated polysaccharides) from macroalgae and seagrasses for their long-term sedimentary C storage. This study shows that marine macroalgae do contain refractory compounds and thus may be more valuable to long-term carbon sequestration than we previously have considered.


Asunto(s)
Secuestro de Carbono/fisiología , Carbono/metabolismo , Plantas/metabolismo , Algas Marinas/metabolismo , Humedales , Animales , Ciclo del Carbono , Nitrógeno/metabolismo , Temperatura
15.
Sci Total Environ ; 914: 169868, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185172

RESUMEN

The Blue Carbon Ecosystems (BCEs), comprising mangroves, saltmarshes, and seagrasses, located at the land-ocean interface provide crucial ecosystem services. These ecosystems serve as a natural barrier against the transportation of plastic waste from land to the ocean, effectively intercepting and mitigating plastic pollution in the ocean. To gain insights into the current state of research, and uncover key research gaps related to plastic pollution in BCEs, this study conveyed a comprehensive overview using bibliometric, altmetric, and literature synthesis approaches. The bibliometric analysis revealed a significant increase in publications addressing plastic pollution in BCEs, particularly since 2018. Geographically, Chinese institutions have made substantial contributions to this research field compared to countries and regions with extensive BCEs and established blue carbon science programs. Furthermore, many studies have focused on mangrove ecosystems, while limited attention was given to exploring plastic pollution in saltmarsh, seagrass, and multiple ecosystems simultaneously. Through a systematic analysis, this study identified four major research themes in BCE-plastics research: a) plastic trapping by vegetated coastal ecosystems, b) microbial plastic degradation, c) ingestion of plastic by benthic organisms, and d) effects of plastic on blue carbon biogeochemistry. Upon synthesising the current knowledge in each theme, we employed a perspective lens to outline future research frameworks, specifically emphasising habitat characteristics and blue carbon biogeochemistry. Emphasising the importance of synergistic research between plastic pollution and blue carbon science, we underscore the opportunities to progress our understanding of plastic reservoirs across BCEs and their subsequent effects on blue carbon sequestration and mineralisation. Together, the outcomes of this review have overarching implications for managing plastic pollution and optimising climate mitigation outcomes through the blue carbon strategies.


Asunto(s)
Carbono , Ecosistema , Secuestro de Carbono , Clima , Cambio Climático , Humedales
16.
Sci Total Environ ; 925: 171728, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492597

RESUMEN

The loss of ecosystem functions and services caused by rapidly declining coastal marine ecosystems, including corals and bivalve reefs and wetlands, around the world has sparked significant interest in interdisciplinary methods to restore these ecologically and socially important ecosystems. In recent years, 3D-printed artificial biodegradable structures that mimic natural life stages or habitat have emerged as a promising method for coastal marine restoration. The effectiveness of this method relies on the availability of low-cost biodegradable printing polymers and the development of 3D-printed biomimetic structures that efficiently support the growth of plant and sessile animal species without harming the surrounding ecosystem. In this context, we present the potential and pathway for utilizing low-cost biodegradable biopolymers from waste biomass as printing materials to fabricate 3D-printed biodegradable artificial structures for restoring coastal marine ecosystems. Various waste biomass sources can be used to produce inexpensive biopolymers, particularly those with the higher mechanical rigidity required for 3D-printed artificial structures intended to restore marine ecosystems. Advancements in 3D printing methods, as well as biopolymer modifications and blending to address challenges like biopolymer solubility, rheology, chemical composition, crystallinity, plasticity, and heat stability, have enabled the fabrication of robust structures. The ability of 3D-printed structures to support species colonization and protection was found to be greatly influenced by their biopolymer type, surface topography, structure design, and complexity. Considering limited studies on biodegradability and the effect of biodegradation products on marine ecosystems, we highlight the need for investigating the biodegradability of biopolymers in marine conditions as well as the ecotoxicity of the degraded products. Finally, we present the challenges, considerations, and future perspectives for designing tunable biomimetic 3D-printed artificial biodegradable structures from waste biomass biopolymers for large-scale coastal marine restoration.


Asunto(s)
Ecosistema , Humedales , Animales , Biomasa , Biopolímeros/química , Polímeros , Impresión Tridimensional
17.
Environ Pollut ; 294: 118637, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34875268

RESUMEN

Freshwater wetlands are natural sinks of carbon; yet, wetland conversion for agricultural uses can shift these carbon sinks into large sources of greenhouse gases. We know that the anthropogenic alteration of wetland hydrology and the broad use of N-fertilizers can modify biogeochemical cycling, however, the extent of their combined effect on greenhouse gases exchange still needs further research. Moreover, there has been recent interest in wetlands rehabilitation and preservation by improving natural water flow and by seeking alternative solutions to nutrient inputs. In a microcosm setting, we experimentally exposed soils to three inundation treatments (Inundated, Moist, Drained) and a nutrient treatment by adding high nitrogen load (300 kg ha-1) to simulate physical and chemical disturbances. After, we measured the depth microprofiles of N2O and O2 concentration and CO2 and CH4 emission rates to determine how hydrological alteration and nitrogen input affect carbon and nitrogen cycling processes in inland wetland soils. Compared to the Control soils, N-fertilizer increased CO2 emissions by 40% in Drained conditions and increased CH4 emissions in Inundated soils over 90%. N2O emissions from Moist and Inundated soils enriched with nitrogen increased by 17.4 and 18-fold, respectively. Overall, the combination of physical and chemical disturbances increased the Global Warming Potential (GWP) by 7.5-fold. The first response of hydrological rehabilitation, while typically valuable for CO2 emission reduction, amplified CH4 and N2O emissions when combined with high nitrogen inputs. Therefore, this research highlights the importance of evaluating the potential interactive effects of various disturbances on biogeochemical processes when devising rehabilitation plans to rehabilitate degraded wetlands.


Asunto(s)
Dióxido de Carbono , Humedales , Dióxido de Carbono/análisis , Fertilización , Hidrología , Metano , Óxido Nitroso/análisis , Suelo
18.
Microorganisms ; 10(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36363713

RESUMEN

The capacity of Blue Carbon Ecosystems to act as carbon sinks is strongly influenced by the metabolism of soil-associated microbes, which ultimately determine how much carbon is accumulated or returned to the atmosphere. The rapid evolution of sequencing technologies has facilitated the generation of tremendous amounts of data on what taxa comprise belowground microbial assemblages, largely available as isolated datasets, offering an opportunity for synthesis research that informs progress on understanding Blue Carbon microbiomes. We identified questions that can be addressed with a synthesis approach, including the high variability across datasets, space, and time due to differing sampling techniques, ecosystem or vegetation specificity, and the relationship between microbiome community and edaphic properties, particularly soil carbon. To address these questions, we collated 34 16S rRNA amplicon sequencing datasets, including bulk soil or rhizosphere from seagrass, mangroves, and saltmarshes within publicly available repositories. We identified technical and theoretical challenges that precluded a synthesis of multiple studies with currently available data, and opportunities for addressing the knowledge gaps within Blue Carbon microbial ecology going forward. Here, we provide a standardisation toolbox that supports enacting tasks for the acquisition, management, and integration of Blue Carbon-associated sequencing data and metadata to potentially elucidate novel mechanisms behind Blue Carbon dynamics.

19.
PeerJ ; 9: e11576, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249491

RESUMEN

High throughput sequencing is improving the efficiency of monitoring diatoms, which inhabit and support aquatic ecosystems across the globe. In this study, we explored the potential of a standard V4 515F-806RB primer pair in recovering diatom plastid 16S rRNA sequences. We used PhytoREF to classify the 16S reads from our freshwater biofilm field sampling from three stream segments across two streams in south-eastern Australia and retrieved diatom community data from other, publicly deposited, Australian 16S amplicon datasets. When these diatom operational taxonomic units (OTUs) were traced using the default RDPII and NCBI databases, 68% were characterized as uncultured cyanobacteria. We analysed the 16S rRNA sequences from 72 stream biofilm samples, separated the chloroplast OTUs, and classified them using the PhytoREF database. After filtering the reads attributed to Bacillariophyta (relative abundance >1%), 71 diatom OTUs comprising more than 90% of the diatom reads in each stream biofilm sample were identified. Beta-diversity analyses demonstrated significantly different diatom assemblages and discrimination among river segments. To further test the approach, the diatom OTUs from our biofilm sampling were used as reference sequences to identify diatom reads from other Australian 16S rRNA datasets in the NCBI-SRA database. Across the three selected public datasets, 67 of our 71 diatom OTUs were detected in other Australian ecosystems. Our results show that diatom plastid 16S rRNA genes are readily amplified with existing 515F-806RB primer sets. Therefore, the volume of existing 16S rRNA amplicon datasets initially generated for microbial community profiling can also be used to detect, characterize, and map diatom distribution to inform phylogeny and ecological health assessments, and can be extended into a range of ecological and industrial applications. To our knowledge, this study represents the first attempt to classify freshwater samples using this approach and the first application of PhytoREF in Australia.

20.
Mar Pollut Bull ; 165: 112024, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33549995

RESUMEN

Coastal ecosystems are under increasing pressure from land-derived eutrophication in most developed coastlines worldwide. Here, we tested for 277 days the effects of a nutrient pulse on blue carbon retention and cycling within an Australian temperate coastal system. After 56 days of exposure, saltmarsh and mangrove plots subject to a high-nutrient treatment (~20 g N m-2 yr-1 and ~2 g P m-2 yr-1) had ~23% lower superficial soil carbon stocks. Mangrove plots also experienced a ~33% reduction in the microbe Amplicon Sequence Variant richness and a shift in community structure linked to elevated ammonium concentrations. Live plant cover, tea litter decomposition, and soil carbon fluxes (CO2 and CH4) were not significantly affected by the pulse. Before the end of the experiment, soil carbon- and nitrogen-cycling had returned to control levels, highlighting the significant but short-lived impact that a nutrient pulse can have on the carbon sink capacity of coastal wetlands.


Asunto(s)
Carbono , Ecosistema , Australia , Carbono/análisis , Nutrientes , Suelo , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA