RESUMEN
BACKGROUND: Excess fat content in chickens has a negative impact on poultry production. The discovery of QTL associated with fat deposition in the carcass allows the identification of positional candidate genes (PCGs) that might regulate fat deposition and be useful for selection against excess fat content in chicken's carcass. This study aimed to estimate genomic heritability coefficients and to identify QTLs and PCGs for abdominal fat (ABF) and skin (SKIN) traits in a broiler chicken population, originated from the White Plymouth Rock and White Cornish breeds. RESULTS: ABF and SKIN are moderately heritable traits in our broiler population with estimates ranging from 0.23 to 0.33. Using a high density SNP panel (355,027 informative SNPs), we detected nine unique QTLs that were associated with these fat traits. Among these, four QTL were novel, while five have been previously reported in the literature. Thirteen PCGs were identified that might regulate fat deposition in these QTL regions: JDP2, PLCG1, HNF4A, FITM2, ADIPOR1, PTPN11, MVK, APOA1, APOA4, APOA5, ENSGALG00000000477, ENSGALG00000000483, and ENSGALG00000005043. We used sequence information from founder animals to detect 4843 SNPs in the 13 PCGs. Among those, two were classified as potentially deleterious and two as high impact SNPs. CONCLUSIONS: This study generated novel results that can contribute to a better understanding of fat deposition in chickens. The use of high density array of SNPs increases genome coverage and improves QTL resolution than would have been achieved with low density. The identified PCGs were involved in many biological processes that regulate lipid storage. The SNPs identified in the PCGs, especially those predicted as potentially deleterious and high impact, may affect fat deposition. Validation should be undertaken before using these SNPs for selection against carcass fat accumulation and to improve feed efficiency in broiler chicken production.
Asunto(s)
Tejido Adiposo/metabolismo , Pollos/genética , Pollos/metabolismo , Estudio de Asociación del Genoma Completo , Genómica , Animales , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genéticaRESUMEN
The COVID-19 has severely affected economies and health systems around the world. Mass testing could work as a powerful alternative to restrain disease dissemination, but the shortage of reagents is a limiting factor. A solution to optimize test usage relies on 'grouping' or 'pooling' strategies, which combine a set of individuals in a single reaction. To compare different group testing configurations, we developed the poolingr package, which performs an innovative hybrid in silico/in vitro approach to search for optimal testing configurations. We used 6759 viral load values, observed in 2389 positive individuals, to simulate a wide range of scenarios. We found that larger groups (>100) framed into multi-stage setups (up to six stages) could largely boost the power to detect spreaders. Although the boost was dependent on the disease prevalence, our method could point to cheaper grouping schemes to better mitigate COVID-19 dissemination through identification and quarantine recommendation for positive individuals.
Asunto(s)
COVID-19 , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Tamizaje Masivo/métodos , Cuarentena , SARS-CoV-2 , Pruebas Serológicas/métodosRESUMEN
Chicken is an important source of protein for human nutrition and a model system for growth and developmental biology. Although the genetic architecture of quantitative traits in meat-type chickens has been the subject of ongoing investigation, the identification of mutations associated with carcass traits of economic interest remains challenging. Therefore, our aim was to identify predicted deleterious mutation, which potentially affects protein function, and test if they were associated with carcass traits in chickens. For that, we performed a genome-wide association analysis (GWAS) for breast, thigh and drumstick traits in meat-type chickens and detected 19 unique quantitative trait loci (QTL). We then used: (1) the identified windows; (2) QTL for abdominal fat detected in a previous study with the same population and (3) previously obtained whole genome sequence data, to identify 18 predicted deleterious single nucleotide polymorphisms (SNPs) in those QTL for further association with breast, thigh, drumstick and abdominal fat traits. Using the additive model, a predicted deleterious SNP c.482C > T (SIFT score of 0.4) was associated (p-value < 0.05) with abdominal fat weight and percentage. This SNP is in the second exon of the MYBPH gene, and its allele frequency deviates from Hardy-Weinberg equilibrium. In conclusion, our study provides evidence that the c.482C > T SNP in the MYBPH gene is a putative causal mutation for fat deposition in meat-type chickens.