Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 35(18)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176071

RESUMEN

Microfabrication procedure of piezoelectric micro electro-mechanical systems based on 5µm thick LiNbO3films on SiO2/Si substrate at wafer scale including deep dry etching of thick LiNbO3films by implementing pulsed mode of Ar/SF6gas was developed. In particular, two (YXlt)/128°/90°LiNbO3-Si cantilevers with tip mass were fabricated and characterized in terms of resonance frequency (511 and 817 Hz), actuation and acceleration sensing capabilities. The quality factor of 89.5 and the electromechanical coupling of 4.8% were estimated from measured frequency dependency of electrical impedance, fitted by using Butterworth-Van Dyke model. The fabricated piezoelectric micro-electro-mechanical systems have demonstrated highly linear displacement with good sensitivity (5.28 ± 0.02µm V-1) as a function of applied voltage and high sensitivity to vibrations of 667 mV g-1indicating a suitability of the structure for actuation purposes and for acceleration or frequency sensing with high precision, respectively.

2.
Sensors (Basel) ; 24(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39066084

RESUMEN

The field of Internet of Things (IoT) technologies is advancing rapidly, driven by the critical need for autonomous and sustainable wireless sensor networks [...].

3.
Sensors (Basel) ; 24(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38400334

RESUMEN

In recent years, the issue of electronic waste production has gained significant attention. To mitigate the environmental impact of e-waste, one approach under consideration involves the development of biodegradable electronic devices or devices that dissolve in the environment at the end of their life cycle. This study presents results related to the creation of a sensor that effectively addresses both criteria. The device was constructed using a composite material formed by impregnating a pullulan membrane (a biodegradable water-soluble biopolymer) with 1-Ethyl-3-Methylimidazolium tetrafluoroborate (a water-soluble ionic liquid) and coating the product with a conductive silver-based varnish. Capitalizing on the piezoionic effect, the device has demonstrated functionality as a vibration sensor with a sensitivity of approximately 5.5 × 10-5 V/mm and a resolution of about 1 mm. The novelty of this study lies in the unique combination of materials. Unlike the use of piezoelectric materials, this combination allows for the production of a device that does not require an external potential difference generator to function properly as a sensor. Furthermore, the combination of a biopolymer, such as pullulan, and an ionic liquid, both readily soluble in water, in creating an active electronic component represents an innovation in the field of vibration sensors.

4.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400436

RESUMEN

This paper introduces an innovative sensor utilizing bubbles coated with thermochromic paint, aiming to facilitate temperature measurements in challenging-to-reach locations without the requirement of an external power source. The research conducted is innovative in terms of both methodology and application. The characterization of the thermochromic properties of paints was, in fact, performed using spectroradiometric measurements by selecting a temperature range useful for applications in various fields including preventive conservation. The study encompasses two main objectives: (1) analyzing the color characteristics of thermochromic paint and plastic resin that forms the bubbles, and (2) assessing a temperature sensor comprising a thermochromic paint-coated bubble subjected to temperature variations. The thermochromic paint exhibits reversible color modifications in response to temperature changes, making it an ideal candidate for applications of this nature. The color characterization phase involves measurements using a spectroradiometer to compare the spectral reflectance factor (SRF%) of the colored plastic resin spread on canvas with that of the inflated bubbles. The sensor characterization entails evaluating color changes of the thermochromic paint on the bubble surface with varying temperatures. Experimental results indicate that the combination of a red (R) bubble and blue (B) thermochromic paint produces quantifiable color variations suitable for the proposed applications, whereas the alternative combination under examination, namely a blue bubble and red thermochromic paint, yields less accurate results. Considering that for both thermochromic paints the color change temperature is 35 °C, it is possible to see how, for B bubble with R thermochromic paint, the chromatic coordinates change value: C* = 3.14 ± 0.14 and h = 289.54 ± 11.58 at room temperature, while C* = 2.96 ± 0.12 and h = 304.20 ± 12.17 at 35 °C. The same is true for R bubble with B thermochromic paint where C* = 25.31 ± 1.01 and h* = 285.05 ± 11.40 at room temperature, while C* = 20.87 ± 0.85 and h = 288.37 ± 11.53 at 35 °C. The study demonstrates the potential of the approach and suggests further investigations into reproducibility and expanded color combinations. The results provide a promising basis for future improvements in temperature monitoring with thermochromic bubble sensors.

5.
Sensors (Basel) ; 24(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39275526

RESUMEN

This work explores the potential of self-powered MEMS devices for application in the preventive conservation of cultural heritage. The main objective is to evaluate the effectiveness of piezoelectric aluminum nitride MEMS (AlN-MEMS) for monitoring vibrations and to investigate its potential for harvesting energy from vibrations, including those induced by visitors. A preliminary laboratory comparison was conducted between AlN-MEMS and the commercial device Tromino®. The study was then extended to the Picture Gallery of Ursino Castle, where joint measurements with the two devices were carried out. The analysis focused on identifying natural frequencies and vibrational energy levels by key metrics, including spectral peaks and the Power Spectral Density (PSD). The results indicated that the response of the AlN-MEMS aligned well with the data collected by the commercial device, especially observing high vibrational energy around 100 Hz. Such results validate the potential of AlN-MEMS for effective vibration measurement and for converting kinetic energy into electrical power, thereby eliminating the need for external power sources. Additionally, the vibrational analysis highlighted specific locations, such as the measurement point Cu4, as exhibiting the highest vibrational energy levels. These points could be used for placing MEMS sensors to ensure efficient vibration monitoring and energy harvesting.

6.
Sensors (Basel) ; 22(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35890776

RESUMEN

The main objective of this work is the characterization and observation of the performance of an IoT measurement and monitoring system in the field of cultural heritage conservation for assessing the health condition of artworks. This article also describes the application of this system to the monitoring of a canvas painting applied on a wooden support, an artwork from the 19th century by the painter Giuseppe Patricolo depicting The Deposition, placed inside a niche in the Santa Caterina Monastery in Palermo (Italy). Considering the presence of the wooden structure, it is useful to measure not only microclimatic parameters such as temperature and humidity, but also vibrations that can in fact cause degradation phenomena in these artworks. This is a first step towards the development of mimetic systems integrated in the work of art without causing physical, mechanical or chemical alterations and ensuring that the level of microclimatic parameters is below the threshold values whose exceeding could compromise the entire artefact.


Asunto(s)
Monitoreo del Ambiente , Microclima , Humedad , Temperatura , Vibración
7.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408142

RESUMEN

The subject of the model research contained in this paper is a new design solution of the energy harvesting system with a star-shaped structure of elastic elements and variable configuration. Numerical experiments focused mainly on the assessment of the configuration of elastic elements in the context of energy harvesting efficiency. The results of computer simulations were limited to zero initial conditions as it is the natural position of the static equilibrium. The article compares the energy efficiency for the selected range of the dimensionless excitation frequency. For this purpose, four cases of elastic element configurations were compared. The results are visualized based on the diagram of RMS voltage induced on piezoelectric electrodes, bifurcation diagrams, Lyapunov exponents, and Poincaré maps, showing the impact of individual solutions on the efficiency of energy harvesting. The results of the simulations show that the harvester's efficiency ranges from 4 V to 20 V depending on the configuration and the frequency range of the excitation, but the design allows for a smooth adjustment to the given conditions.

8.
Sensors (Basel) ; 22(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35009923

RESUMEN

The piezoelectric energy-harvesting system with double-well characteristics and hysteresis in the restoring force is studied. The proposed system consists of a bistable oscillator based on a cantilever beam structure. The elastic force potential is modified by magnets. The hysteresis is an additional effect of the composite beam considered in this system, and it effects the modal solution with specific mass distribution. Consequently, the modal response is a compromise between two overlapping, competing shapes. The simulation results show evolution in the single potential well solution, and bifurcations into double-well solutions with the hysteretic effect. The maximal Lyapunov exponent indicated the appearance of chaotic solutions. Inclusion of the shape branch overlap parameter reduces the distance between the external potential barriers and leads to a large-amplitude solution and simultaneously higher voltage output with smaller excitation force. The overlap parameter works in the other direction: the larger the overlap value, the smaller the voltage output. Presumably, the successful jump though the potential barrier is accompanied by an additional switch between the corresponding shapes.

9.
Sensors (Basel) ; 22(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35062520

RESUMEN

In this paper, we present integrated lead-free energy converters based on a suitable MEMS fabrication process with an embedded layer of LiNbO3. The fabrication technology has been developed to realize micromachined self-generating transducers to convert kinetic energy into electrical energy. The process proposed presents several interesting features with the possibility of realizing smaller scale devices, integrated systems, miniaturized mechanical and electromechanical sensors, and transducers with an active layer used as the main conversion element. When the system is fabricated in the typical cantilever configuration, it can produce a peak-to-peak open-circuit output voltage of 0.208 V, due to flexural deformation, and a power density of 1.9 nW·mm-3·g-2 at resonance, with values of acceleration and frequency of 2.4 g and 4096 Hz, respectively. The electromechanical transduction capability is exploited for sensing and power generation/energy harvesting applications. Theoretical considerations, simulations, numerical analyses, and experiments are presented to show the proposed LiNbO3-based MEMS fabrication process suitability. This paper presents substantial contributions to the state-of-the-art, proposing an integral solution regarding the design, modelling, simulation, realization, and characterization of a novel transducer.

10.
Sensors (Basel) ; 21(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670269

RESUMEN

Green sensors are required for the realization of a sustainable economy. Biopolymer-derived composites are a meaningful solution to such a needing. Bacterial Cellulose (BC) is a green biopolymer, with significant mechanical and electrical properties. BC-based composites have been proposed to realize generating mechanoelectrical transductors. The transductors consist of a sheet of BC, impregnated of Ionic Liquids (ILs), and covered with two layers of Conducting Polymer (CP) as the electrodes. Charges accumulate at the electrodes when the transductor is bent. Generating sensors can produce either Open Circuit (OC) voltage or Short Circuit (SC) current. In the paper, the OC voltage and SC current, generated from BC-based composites, in a cantilever configuration and subjected to dynamic deformation are compared. The influence of ILs in the transduction performance, both in the case of OC voltage and SC current is investigated. Experimental investigations of structural, chemical, and mechanoelectrical transduction properties, when the composite is dynamically bent, are performed. The mechanoelectrical investigation has been carried on both in the time and in the frequency domains. Reported results show that no relevant changes can be obtained because of the use of IL when the OC voltage is considered. On the contrary, dramatic changes are observed for the case of SC current, whose value increases by about two orders of magnitude.


Asunto(s)
Bacterias/química , Celulosa/química , Líquidos Iónicos/química , Transductores , Electrodos , Polímeros
11.
Sensors (Basel) ; 22(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35009838

RESUMEN

Wireless Sensor Networks (WSNs) are prone to highly constrained resources, as a result ensuring the proper functioning of the network is a requirement. Therefore, an effective WSN management system has to be integrated for the network efficiency. Our objective is to model, design, and propose a homogeneous WSN hybrid architecture. This work features a dedicated power utilization optimization strategy specifically for WSNs application. It is entitled Hybrid Energy-Efficient Power manager Scheduling (HEEPS). The pillars of this strategy are based on the one hand on time-out Dynamic Power Management (DPM) Intertask and on the other hand on Dynamic Voltage and Frequency Scaling (DVFS). All tasks are scheduled under Global Earliest Deadline First (GEDF) with new scheduling tests to overcome the Dhall effect. To minimize the energy consumption, the HEEPS predicts, defines and models the behavior adapted to each sensor node, as well as the associated energy management mechanism. HEEPS's performance evaluation and analysis are performed using the STORM simulator. A comparison to the results obtained with the various state of the art approaches is presented. Results show that the power manager proposed effectively schedules tasks to use dynamically the available energy estimated gain up to 50%.

12.
Sensors (Basel) ; 20(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971999

RESUMEN

Analog hardware used for signal envelope extraction in low-power interfaces for acoustic event detection, owing to its low complexity and power consumption, suffers from low sensitivity and performs poorly under low signal to noise ratios (SNR) found in undersea environments. To overcome those problems, in this paper, we propose a novel passive electromechanical solution for the signal feature extraction in low frequency acoustic range (200-1000 Hz), in the form of a piezoelectric vibration transducer, and a rectifier with a mechanically switched inductor. A simulation study of the novel solution is presented, and a proof-of-concept device is developed and experimentally characterized. We demonstrate its applicability and show the advantages of the passive electromechanical device in comparison to the active electrical solution in terms of operation with lower input signals (<20 mV compared to 40 mV), and higher robustness in low SNR conditions (output voltage loss for -10 dB ≤ SNR < 40 dB of 1 mV, compared to 10 mV). In addition to the signal processing performance improvements, compared to our previous work, the utilization of the presented novel passive feature extractor would also decrease power consumption of a detector's channel by over 76%, enabling life-time extension and/or increased quality of detection with larger number of channels. To the best of our knowledge, this is the first solution presented in the literature that demonstrates the possibility of using a passive electromechanical feature extractor in a low-power analog wake-up event detector interface.

13.
Sensors (Basel) ; 19(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974875

RESUMEN

In this paper, we present a redundant microsensor based on the bulk and etch silicononinsulator (BESOI) process for measuring relative humidity (RH), by using a grapheneoxide/polyvinylalcohol (GO/PVA) composite. The MEMS is a mechanical oscillator, composed of a proof mass with multilayer of nanomaterials (GO/PVA) and suspended by four crab-leg springs. The redundant approach realized concerns the use of different readout strategies in order to estimate the same measurand RH. This is an intriguing solution to realize a robust measurement system with multiple outputs, by using the GO/PVA as functional material. In the presence of RH variation, GO/PVA (1) changes its mass, and as consequence, a variation of the natural frequency of the integrated oscillator can be observed; and (2) varies its conductivity, which can be measured by using two integrated electrodes. The sensor was designed, analyzed and modeled; experimental results are reported here to demonstrate the effectiveness of our implementation.

14.
Sensors (Basel) ; 19(12)2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212839

RESUMEN

The continuous development of internet of things (IoT) infrastructure and applications is paving the way for advanced and innovative ideas and solutions, some of which are pushing the limits of state-of-the-art technology. The increasing demand for Wireless Sensor Nodes (WSNs) able to collect and transmit data through wireless communication channels, while often positioned in locations that are difficult to access, is driving research into innovative solutions involving energy harvesting (EH) and wireless power transfer (WPT) to eventually allow battery-free sensor nodes. Due to the pervasiveness of radio frequency (RF) energy, RF EH and WPT are key technologies with the potential to power IoT devices and smart sensing architectures involving nodes that need to be wireless, maintenance free, and sufficiently low in cost to promote their use almost anywhere. This paper presents a state-of-the-art, ultra-low power 2.5 µ W highly integrated mixed signal system on chip (SoC), for multi-source energy harvesting and wireless power transfer. It introduces a novel architecture that integrates an ultra-low power intelligent power management, an RF to DC converter with very low power sensitivity and high power conversion efficiency (PCE), an Amplitude-Shift-Keying/Frequency-Shift-Keying (ASK/FSK) receiver and digital circuitry to achieve the advantage to cope, in a versatile way and with minimal use of external components, with the wide variety of energy sources and use cases. Diverse methods for powering Wireless Sensor Nodes through energy harvesting and wireless power transfer are implemented providing related system architectures and experimental results.

15.
Sensors (Basel) ; 19(22)2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31717550

RESUMEN

In several application fields, plasmonic sensor platforms combined with bio-receptors are intensively used to obtain biosensors. Most of these commercial devices are based on a disposable chip. Usually a gold chip, functionalized with a specific bio-receptor, inside a costly sensor system, is used. In this work, we propose a low-cost and small-size sensor system, used for monitoring a disposable plasmonic chip, based on an innovative optical waveguide made of bacterial cellulose (BC). In particular, we have sputtered gold on the green slab waveguide that is able to excite localized surface plasmon resonance (LSPR). Experimental results are presented on the capabilities of using the BC-based composite as an eco-friendly plasmonic sensor platform, which could be exploited for realizing disposable biosensors. The sensor has been used with optical fibers and simple equipment. More specifically, the fibers connect the green disposable LSPR sensor with a light source and with a spectrometer. The novel plasmonic sensing approach has been tested using two different optical waveguide configurations of BC, with and without ions inside BC.


Asunto(s)
Técnicas Biosensibles/métodos , Celulosa/metabolismo , Oro/química , Bacterias/metabolismo , Resonancia por Plasmón de Superficie
16.
Sensors (Basel) ; 20(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878206

RESUMEN

A bio-derived power harvester from mechanical vibrations is here proposed. The harvester aims at using greener fabrication technologies and reducing the dependence from carbon-based fossil energy sources. The proposed harvester consists mainly of biodegradable matters. It is based on bacterial cellulose, produced by some kind of bacteria, in a sort of bio-factory. The cellulose is further impregnated with ionic liquids and covered with conducting polymers. Due to the mechanoelectrical transduction properties of the composite, an electrical signal is produced at the electrodes, when a mechanical deformation is imposed. Experimental results show that the proposed system is capable of delivering electrical energy on a resistive load. Applications can be envisaged on autonomous or quasi-autonomous electronics, such as wireless sensor networks, distributed measurement systems, wearable, and flexible electronics. The production technology allows for fabricating the harvester with low power consumption, negligible amounts of raw materials, no rare elements, and no pollutant emissions.


Asunto(s)
Bacterias/metabolismo , Celulosa/química , Fuentes Generadoras de Energía , Electrónica , Líquidos Iónicos/química , Polímeros/química , Vibración , Tecnología Inalámbrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA