Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(14): 143003, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084427

RESUMEN

We theoretically investigate the trap-assisted formation of complexes in atom-ion collisions and their impact on the stability of the trapped ion. The time-dependent potential of the Paul trap facilitates the formation of temporary complexes by reducing the energy of the atom, which gets temporarily stuck in the atom-ion potential. As a result, those complexes significantly impact termolecular reactions leading to molecular ion formation via three-body recombination. We find that complex formation is more pronounced in systems with heavy atoms, but the mass has no influence on the lifetime of the transient state. Instead, the complex formation rate strongly depends on the amplitude of the ion's micromotion. We also show that complex formation persists even in the case of a time-independent harmonic trap. In this case, we find higher formation rates and longer lifetimes than in Paul traps, indicating that the atom-ion complex plays an essential role in atom-ion mixtures in optical traps.

2.
Phys Rev Lett ; 128(10): 103401, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35333077

RESUMEN

We measure chemical reactions between a single trapped ^{174}Yb^{+} ion and ultracold Li_{2} dimers. This produces LiYb^{+} molecular ions that we detect via mass spectrometry. We explain the reaction rates by modeling the dimer density as a function of the magnetic field and obtain excellent agreement when we assume the reaction to follow the Langevin rate. Our results present a novel approach towards the creation of cold molecular ions and point to the exploration of ultracold chemistry in ion molecule collisions. What is more, with a detection sensitivity below molecule densities of 10^{14} m^{-3}, we provide a new method to detect low-density molecular gases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA