Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trop Anim Health Prod ; 56(7): 226, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093442

RESUMEN

Since 2019, Lumpy skin disease (LSD) has suddenly spread in many Asian countries, including India. LSD primarily occurs in cattle. However, recent LSD outbreaks in India have also revealed significant morbidity and production losses in buffaloes. This has raised concerns about the role of buffaloes in the epidemiology and transmission of LSD and necessitates the inclusion of buffaloes in the mass vaccination program for the prevention and control of the disease in the country. However, there is no significant data on the immune response in buffaloes following vaccination with the LSD vaccine. In this study, we evaluated antibody- and cell-mediated immune responses following vaccination with a newly developed live-attenuated LSD vaccine (Lumpi-ProVacInd). The detectable amount of anti-LSDV antibodies was observed at 1-2 months following vaccination, with a peak antibody titer at 3 months. Upon stimulation of the peripheral blood mononuclear cells (PBMCs) with the UV-inactivated LSDV antigen, there was a significant increase in CD8 + T cell counts in vaccinated animals as compared to the unvaccinated animals. Besides, vaccinated animals also showed a significant increase in IFN-γ levels upon antigenic stimulation of their PBMCs with LSDV antigen. In conclusion, the buffaloes also mount a potent antibody- and cell-mediated immune response following vaccination with Lumpi-ProVacInd.


Asunto(s)
Búfalos , Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Vacunas Atenuadas , Vacunas Virales , Animales , Búfalos/inmunología , Dermatosis Nodular Contagiosa/prevención & control , Dermatosis Nodular Contagiosa/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Virus de la Dermatosis Nodular Contagiosa/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , India , Inmunidad Celular , Anticuerpos Antivirales/sangre , Vacunación/veterinaria , Leucocitos Mononucleares/inmunología , Femenino
2.
Arch Virol ; 168(12): 290, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37955695

RESUMEN

In this study, miRNA profiling of cells infected with lumpy skin disease virus (LSDV) was conducted for the first time. When compared to mock-infected cells, LSDV-infected primary lamb testicle (LT) cells showed dysregulation of 64, 85, and 85 miRNAs at 12 hours postinfection (hpi), 48 hpi, and 72 hpi, respectively. While some of these miRNAs were found to be dysregulated at a particular time point following LSDV infection, others were dysregulated at all three time points. Analysis of the differentially expressed miRNA-mRNA interaction networks, Gene Ontology analysis of the predicted targets, and KEGG analysis of highly enriched pathways revealed several cellular factors/pathways involved in protein/ion/enzyme binding, cell differentiation, movement of subcellular components, calcium reabsorption, aldosterone synthesis and secretion, and melanogenesis. Some selected upregulated (oar-mir-379-5p, oar-let-7d, Chr10-18769, Chr2_5162 and oar-miR-493-5p) and downregulated (ChrX-33741, Chr3_8257 and Chr26_32680) miRNAs were further confirmed by quantitative real-time PCR. These findings contribute to our understanding of virus replication, virus-host interactions, and disease pathogenesis, and the differentially expressed miRNAs and their cellular targets may serve as biomarkers as well as novel targets for therapeutic intervention against LSDV.


Asunto(s)
Virus de la Dermatosis Nodular Contagiosa , MicroARNs , Bovinos , Masculino , Ovinos , Animales , Testículo , Diferenciación Celular , Calcio , MicroARNs/genética
3.
Acta Virol ; 67(1): 79-90, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950888

RESUMEN

Equine herpesvirus 1 (EHV1) infection is a global health problem in equines and the virus is responsible for abortions, respiratory disease and myeloencephalitis in horses. Disease management requires proper biosecurity and immunoprophylactic measures. Vaccines strengthening both arms of immunity are essential for proper control and there has been a continuous focus in this area for generation of better vaccines. Here we report construction of bacterial artificial chromosome (BAC) clone of EHV-1 strain Tohana for mutagenesis of the virus and generation of gE gene deletion mutant EHV1. The BAC clone was generated by inserting the mini-F plasmid replacing ORF71 of EHV1 and transforming into E. coli for generation of EHV1-BAC. The infectious virus was regenerated from EHV-1 BAC DNA in RK13 cells. To check utility of EHV1-BAC, we have generated mutant EHV1 by deleting the virulence-associated gE gene. The mutant virus (vToHΔgE) showed significantly reduced plaque size without affecting replication efficiency. Pathological evaluation of lesions in BALB/c mice infected with vToHΔgE revealed reduction in clinical signs and pathology in comparison to the wild-type virus. Generation of infectious BAC of EHV1 and its usage in construction of attenuated viruses shows potential of the technology for development of indigenous modified live vaccine for EHV1. Keywords: quine herpesvirus 1; bacterial artificial chromosome (BAC); mutation; glycoprotein E; vaccine.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Embarazo , Femenino , Animales , Caballos , Ratones , Herpesvirus Équido 1/genética , Escherichia coli/genética , Modelos Animales de Enfermedad , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/genética , Enfermedades de los Caballos/prevención & control , Eliminación de Gen
4.
Microb Pathog ; 162: 105310, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34838612

RESUMEN

Burkholderia mallei causes a highly fatal infectious disease in equines known as glanders. It is one of the OIE listed notifiable diseases, which entails strict control policy measures once B. mallei infection is confirmed in the susceptible hosts. Humans, especially equine handlers, veterinary professionals and laboratory workers are at greater risk to acquire the B. mallei infection directly through prolonged contact with glanderous equines, and indirectly through unprotected handling of B. mallei contaminated materials. Further, natural resistance of B. mallei to multiple antibiotics, aerosol transmission, lack of effective vaccine and treatment make this organism a potential agent of biological warfare. Results of experimental B. mallei infection in mouse and non-human primates and immunization with live attenuated B. mallei strains demonstrated that activation of early innate and adaptive immune responses play a critical role in controlling B. mallei infection. However, the immune response elicited by the primary hosts (equids) B. mallei infection is poorly understood. Therefore, we aimed to investigate immune responses in glanders affected horses (n = 23) and mules (n = 1). In this study, chronically infected equids showed strong humoral responses (IgM, IgG and IgA) specific to B. mallei type 6 secretory proteins such as Hcp1, TssA and TssB. The infected equids also elicited robust cellular responses characterized by significantly elevated levels of IFN-γ, TNF-α, IL-12, IL-17 and IL-6 in PBMCs. In addition, stimulation of equine PBMCs by Hcp1 resulted in the further elevation of these cytokines. Thus, the present study indicated that antibody response and T helper cell (Th) type 1-associated cytokines were the salient features of chronic B. mallei infection in horses. The immune responses also suggest further evaluation of these proteins as potential vaccine candidates.


Asunto(s)
Burkholderia mallei , Muermo , Animales , Citocinas , Equidae , Caballos , Inmunoglobulinas , Ratones
5.
Virus Genes ; 54(1): 160-164, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29116575

RESUMEN

A virulent Aeromonas veronii biovar sobria and the corresponding novel, lytic bacteriophage (VTCCBPA5) were isolated from village pond water. The phage was found to belong to family Podoviridae. PCR analysis of major capsid protein gene confirmed its classification to T7-like genus. The protein profiling by SDS-PAGE indicated the major structural protein to be ~ 45 kDa. The phage (VTCCBPA5) is host specific and is stable over a range of pH (6-10) and temperatures (4-45 °C). On the basis of restriction endonuclease analysis combined with prediction mapping, it was observed to vary significantly from previously reported podophages of Aeromonas sp., viz. phiAS7 and Ahp1. The phylogenetic analysis on the basis of PCR-amplified segment of DNA polymerase gene of phage revealed it being an outgroup from podophages of Klebsiella sp. and Pseudomonas sp. though a small internal fragment (359 bp) showed the highest identity (77%) with Vibrio sp. phages. Thus, this is the first report of a novel Podoviridae phage against A. veronii. It expands the assemblage of podophages against Aeromonas sp. and BPA5 could be potentially useful in biocontrol of environmentally acquired Aeromonas veronii infections.


Asunto(s)
Aeromonas veronii/aislamiento & purificación , Aeromonas veronii/virología , Podoviridae/crecimiento & desarrollo , Podoviridae/aislamiento & purificación , ADN Viral/genética , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/efectos de la radiación , Peso Molecular , Filogenia , Mapeo Físico de Cromosoma , Reacción en Cadena de la Polimerasa , Temperatura , Proteínas Virales/análisis , Proteínas Virales/química , Proteínas Virales/genética , Microbiología del Agua
6.
J Equine Sci ; 29(1): 25-31, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593446

RESUMEN

Bordetella bronchiseptica is a well-known Gram-negative bacterial pathogen causing a plethora of diseases in different animals. Although its infection has been reported from pigs and dogs in India, no report of B. bronchiseptica from horses is described. We report for the first time, isolation, identification and characterization of strains of B. bronchiseptica from respiratory infection in horses from different states in India. The antimicrobial susceptibility testing showed resistance to penicillins, ceftazidime, and chloramphanicol. The virulence capability of the strains was confirmed by sequencing genes such as adenylate cyclase toxin (cyaA), bordetella virulence gene (bvgA) and by PCR detection of flagellin gene (fla). We demonstrate the involvement of B. bronchiseptica strains in respiratory tract infection in horses in India.

7.
BMC Genomics ; 18(1): 652, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28830350

RESUMEN

BACKGROUND: Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. RESULTS: The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. CONCLUSIONS: Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the codon usage patterns and evolution of polymerase genes of EIVs.


Asunto(s)
Codón/genética , ADN Polimerasa Dirigida por ADN/genética , Evolución Molecular , Subtipo H3N8 del Virus de la Influenza A/enzimología , Subtipo H3N8 del Virus de la Influenza A/genética , Filogenia , Selección Genética
8.
Front Vet Sci ; 11: 1334485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550783

RESUMEN

Glanders is a highly infectious and notifiable disease of equines that occurs due to Burkholderia mallei. In India, glanders re-emerged in 2006 and thereafter regular outbreaks have been reported in various states (n = 14). Frequent and prolonged contact with equids with glanders may transmit B. mallei infection to humans. This study was designed to learn more about the Knowledge, Awareness and Perception (KAP) of veterinarians, para veterinarians, and physicians about equine glanders, which will help in enhancing the nation-wide glanders eradication programme. A total of 165 respondent's from 11 Indian states and one union territory were surveyed. Most of the respondents (n = 160) were from equine glanders affected or endemic states. Knowledge gap analysis revealed that 40.3 and 22% of the participants were not aware of government regulations and the transmission of glanders, respectively. These are major concerns given the wide spread occurrence of disease in the country. Awareness test on glanders revealed that 65(39.4%) participants would collect biological samples for laboratory confirmation, 67(40.6%) would inform the concerned authorities and 106 (64.2%) replied that they would eliminate the glanders infected equines. Analysis of perception towards equine glanders showed that majority of the participants (n = 113, 68.4%) observed that equine keepers were reluctant to disclose the clinical symptoms of B. mallei infection. Furthermore, non-co-operation and unwillingness by superiors (33.9%), financial (31%), administrative (28.4%), and technical limitations (27.8%) were major constraints under the perception analysis. This study reveals that veterinarians need to be educated on governmental policies and guidelines on equine glanders with regular training and awareness programs. Intersectoral co-ordination to investigate human glanders is also needed.

9.
Vet Q ; 44(1): 1-22, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39233648

RESUMEN

Lumpy skin disease (LSD) is an economically significant, emerging viral disease of Cattle and Buffaloes. This study aimed to investigate the causes of high mortality in a recent LSD epidemic in India. We examined 1618 animals across seventy outbreaks and conducted post-mortem on 48 cattle out of 513 clinically suspected LSD cases. The morbidity, mortality and case fatality rates recorded were 31.70%, 2.97 and 9.37% respectively. Disease stages were categorized as early (20.81%), mid (42.02%), and late (37.17%) and the distribution of skin lesions was classified as mild (34.14%), moderate (39.39%), and severe (26.47%). Post-mortem findings revealed systemic infection with necrotic and ulcerative nodules on multiple internal organs. Histologically, necrotizing vasculitis and mononuclear cell infiltration with intracytoplasmic inclusions were observed in various organs. The highest viral load was found in skin nodules/scabs, trachea, tongue, and lymph nodes. The viral load was significantly higher in mid- and late-stages of skin nodules and internal organs; whereas, blood from early-stage showed high viral load. The expression of Th1-type and Th2-type cytokines varied significantly across different stages of the disease. The downregulation of the apoptotic intrinsic and upregulation of the extrinsic pathway genes, suggesting that the latter plays a role in LSDV infection. Genetic analysis revealed that the LSD virus (LSDV) isolates were derived from a Kenyan ancestral strain with unique nucleotide changes in RPO30 and P32 gene. In conclusion, the high mortality in the recent Indian LSD epidemic can be attributed to a newly identified, highly virulent strain of LSDV causing systemic infection.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Dermatosis Nodular Contagiosa/virología , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/patología , Virus de la Dermatosis Nodular Contagiosa/genética , Bovinos , India/epidemiología , Epidemiología Molecular , Epidemias/veterinaria , Carga Viral/veterinaria , Brotes de Enfermedades/veterinaria , Femenino , Masculino
10.
Vet Res Commun ; 48(3): 1707-1726, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38528300

RESUMEN

Equine influenza (EI) is a highly contagious acute respiratory disease of equines caused by the H3N8 subtype of Influenza A virus i.e. equine influenza virus (EIV). Vaccination is an important and effective tool for the control of EI in equines. Most of the commercial influenza vaccines are produced in embryonated hen's eggs which has several inherent disadvantages. Hence, subunit vaccine based on recombinant haemagglutinin (HA) antigen, being the most important envelope glycoprotein has been extensively exploited for generating protective immune responses, against influenza A and B viruses. We hypothesized that novel vaccine formulation using baculovirus expressed recombinant HA1 (rHA1) protein coupled with bacteriophage will generate strong protective immune response against EIV. In the present study, the recombinant HA1 protein was produced in insect cells using recombinant baculovirus having cloned HA gene of EIV (Florida clade 2 sublineage) and the purified rHA1 was chemically coupled with bacteriophage using a crosslinker to produce rHA1-phage vaccine candidate. The protective efficacy of vaccine preparations of rHA1-phage conjugate and only rHA1 proteins were evaluated in mouse model through assessing serology, cytokine profiling, clinical signs, gross and histopathological changes, immunohistochemistry, and virus quantification. Immunization of vaccine preparations have stimulated moderate antibody response (ELISA titres-5760 ± 640 and 11,520 ± 1280 for rHA1 and rHA1-phage, respectively at 42 dpi) and elicited strong interferon (IFN)-γ expression levels after three immunizations of vaccine candidates. The immunized BALB/c mice were protected against challenge with wild EIV and resulted in reduced clinical signs and body weight loss, reduced pathological changes, decreased EIV antigen distribution, and restricted EIV replication in lungs and nasopharynx. In conclusion, the immune responses with moderate antibody titer and significantly higher cytokine responses generated by the rHA1-phage vaccine preparation without any adjuvant could be a novel vaccine candidate for quick vaccine preparation through further trials of vaccine in the natural host.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Vacunas de Subunidad , Animales , Vacunas contra la Influenza/inmunología , Ratones , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/inmunología , Vacunas de Subunidad/inmunología , Subtipo H3N8 del Virus de la Influenza A/inmunología , Femenino , Bacteriófagos/inmunología , Bacteriófagos/genética , Ratones Endogámicos BALB C , Enfermedades de los Caballos/prevención & control , Enfermedades de los Caballos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Inmunogenicidad Vacunal , Caballos
11.
Trop Anim Health Prod ; 45(6): 1429-35, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23430660

RESUMEN

Corynebacterium pseudotuberculosis, a Gram-positive bacterium is the causative agent of caseous lymphadenitis (CLA), a chronic disease of sheep, goats and other warm blooded animals. In the present study, a total of 1,080 sheep reared under semi-intensive system on organized farms situated in the semi arid tropical region of Rajasthan, India, was clinically examined. Pus samples from superficial lymph nodes of 25 (2.31%) adult sheep showing clinical lesions similar to CLA were collected for laboratory analyses. On the basis of morphological, cultural and biochemical characteristics 12 (48%) bacterial isolates from pus identified it as C. pseudotuberculosis. A polymerase chain reaction (PCR) assay targeting Putative oligopeptide/dipeptide ABC transporter, nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase coenzyme F420-dependent and proline iminopeptidase (PIP) genes of C. pseudotuberculosis was developed that showed 14 pus samples as positive. All C. pseudotuberculosis isolates were also found positive for these genes in the PCR. The specificity of the PCR products was confirmed by sequencing of the amplified products that showed 98-100% homology with published sequences available in the NCBI database. The present study shows the incidence of CLA as 2.31%, 1.1% and 1.29% based on clinical, bacterial culture and direct pus PCR assay, respectively. The PCR assay was rapid, specific and as significant as bacterial culture in detecting bacteria directly in the clinical pus samples. The PCR assay developed in the study can be applied for the diagnosis and control of CLA. Furthermore, the assay can also be applied to detect C. pseudotuberculosis in various clinical samples.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Corynebacterium/veterinaria , Corynebacterium pseudotuberculosis/aislamiento & purificación , Linfadenitis/veterinaria , Reacción en Cadena de la Polimerasa/métodos , Enfermedades de las Ovejas/diagnóstico , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Infecciones por Corynebacterium/complicaciones , Infecciones por Corynebacterium/diagnóstico , Infecciones por Corynebacterium/microbiología , Corynebacterium pseudotuberculosis/genética , India , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/patología , Linfadenitis/diagnóstico , Linfadenitis/microbiología , Datos de Secuencia Molecular , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Reacción en Cadena de la Polimerasa/veterinaria , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/veterinaria , Ovinos , Enfermedades de las Ovejas/microbiología , Oveja Doméstica , Supuración/microbiología , Supuración/patología
12.
Virus Res ; 329: 199105, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36977446

RESUMEN

Rho-associated protein kinase (ROCK) is a serine-threonine kinase and is a major downstream effector of the small GTPaseRhoA. Upon activation, Rho/ROCK cell signaling pathway regulates cell morphology, polarity, and cytoskeletal remodeling. Recent years have highlighted the role of ROCK signaling pathway in the replication of diverse group of viruses. Cell contractions and membrane blebbing induced by certain group of viruses is mediated via ROCK signaling and facilitates virus replication by sequestration of cellular factors and anchoring them at replication sites (viral factories). Besides, ROCK signaling also stabilizes the nascent viral mRNA for its efficient transcription and translation and, regulates trafficking of the viral proteins. In addition, ROCK signaling is also involved in modulating the immune response to viral infections. This review describes the regulation of virus replication by ROCK signaling with the basic aim of defining it as a target for the development of novel antiviral therapeutics.


Asunto(s)
Transducción de Señal , Virus , Proteínas Serina-Treonina Quinasas/genética , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Virus/metabolismo , Replicación Viral
13.
Trop Anim Health Prod ; 44(7): 1319-22, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22371102

RESUMEN

Corynebacterium pseudotuberculosis is the causative agent of caseous lymphadenitis (CL), a chronic debilitating disease of goats. In the present study, a total of 575 goats of Sirohi breed on an organized farm situated in the semi-arid tropical region of Rajasthan, India were clinically examined. Pus samples from superficial lymph nodes of 27 (4.7%) adult goats presenting clinical lesions suggestive of CL were collected for bacteriological and molecular analyses. Of these goats, 51.9% yielded C. pseudotuberculosis on the basis of morphological, cultural and biochemical characteristics. A polymerase chain reaction (PCR) assay targeting proline iminopeptidase gene specific to C. pseudotuberculosis was developed that confirmed all 14 bacterial isolates. The specificity of the PCR product was confirmed by sequencing of the 551-bp amplicon in both senses, showing 98-100% homology with published sequences. Thus, overall prevalence rate based on clinical, bacterial culture and PCR assay were found to be 4.7%, 2.4% and 2.4%, respectively. The PCR assay developed in this study was found to be specific and rapid, and could be used for confirmation of CL in goats as an alternative method to generally cumbersome, time-consuming and less reliable conventional methods.


Asunto(s)
Infecciones por Corynebacterium/veterinaria , Corynebacterium pseudotuberculosis/genética , Enfermedades de las Cabras/microbiología , Linfadenitis/veterinaria , Aminopeptidasas/genética , Animales , Infecciones por Corynebacterium/epidemiología , Infecciones por Corynebacterium/microbiología , Infecciones por Corynebacterium/patología , Corynebacterium pseudotuberculosis/aislamiento & purificación , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/patología , Cabras , India/epidemiología , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/patología , Linfadenitis/epidemiología , Linfadenitis/microbiología , Linfadenitis/patología , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia , Análisis de Secuencia de ADN , Homología de Secuencia , Supuración/epidemiología , Supuración/microbiología , Supuración/patología , Supuración/veterinaria
14.
Antibiotics (Basel) ; 12(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36671226

RESUMEN

Trueperella pyogenes is a Gram-positive opportunistic pathogen that causes severe cases of mastitis, metritis, and pneumonia in a wide range of animals, resulting in significant economic losses. Although little is known about the virulence factors involved in the disease pathogenesis, a comprehensive comparative genome analysis of T. pyogenes genomes has not been performed till date. Hence, present investigation was carried out to characterize and compare 19 T. pyogenes genomes originating in different geographical origins including the draftgenome of the first Indian origin strain T. pyogenes Bu5. Additionally, candidate virulence determinants that could be crucial for their pathogenesis were also detected and analyzed by using various bioinformatics tools. The pan-genome calculations revealed an open pan-genome of T. pyogenes. In addition, an inventory of virulence related genes, 190 genomic islands, 31 prophage sequences, and 40 antibiotic resistance genes that could play a significant role in organism's pathogenicity were detected. The core-genome based phylogeny of T. pyogenes demonstrates a polyphyletic, host-associated group with a high degree of genomic diversity. The identified core-genome can be further used for screening of drug and vaccine targets. The investigation has provided unique insights into pan-genome, virulome, mobiliome, and resistome of T. pyogenes genomes and laid the foundation for future investigations.

15.
PLoS One ; 16(8): e0255612, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34411120

RESUMEN

Salmonella enterica serovar Gallinarum biovar Pullorum (bvP) and biovar Gallinarum (bvG) are the etiological agents of pullorum disease (PD) and fowl typhoid (FT) respectively, which cause huge economic losses to poultry industry especially in developing countries including India. Vaccination and biosecurity measures are currently being employed to control and reduce the S. Gallinarum infections. High endemicity, poor implementation of hygiene and lack of effective vaccines pose challenges in prevention and control of disease in intensively maintained poultry flocks. Comparative genome analysis unravels similarities and dissimilarities thus facilitating identification of genomic features that aids in pathogenesis, niche adaptation and in tracing of evolutionary history. The present investigation was carried out to assess the genotypic differences amongst S.enterica serovar Gallinarum strains including Indian strain S. Gallinarum Sal40 VTCCBAA614. The comparative genome analysis revealed an open pan-genome consisting of 5091 coding sequence (CDS) with 3270 CDS belonging to core-genome, 1254 CDS to dispensable genome and strain specific genes i.e. singletons ranging from 3 to 102 amongst the analyzed strains. Moreover, the investigated strains exhibited diversity in genomic features such as virulence factors, genomic islands, prophage regions, toxin-antitoxin cassettes, and acquired antimicrobial resistance genes. Core genome identified in the study can give important leads in the direction of design of rapid and reliable diagnostics, and vaccine design for effective infection control as well as eradication. Additionally, the identified genetic differences among the S. enterica serovar Gallinarum strains could be used for bacterial typing, structure based inhibitor development by future experimental investigations on the data generated.


Asunto(s)
Proteínas Bacterianas/genética , Genómica/métodos , Enfermedades de las Aves de Corral/diagnóstico , Salmonelosis Animal/diagnóstico , Salmonella enterica/genética , Animales , Pollos , India/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/epidemiología , Salmonelosis Animal/genética , Salmonelosis Animal/microbiología , Salmonella enterica/clasificación , Salmonella enterica/aislamiento & purificación , Serogrupo
16.
Asia Pac J Public Health ; 32(5): 274-277, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32583670

RESUMEN

Glanders is a fatal bacterial infection of equids caused by Burkholderia mallei. The infection can be transmitted to humans through prolonged direct contact with glanderous equids. Recently, reemergence of equine glanders has been reported in many countries. To investigate zoonotic transmission of B mallei infection, sera were collected from 538 humans including equine handlers and veterinary professionals exposed to glanderous equids. Samples were tested by ELISA (enzyme-linked immunosorbent assay) and complement fixation test and found negative for B mallei-specific antibodies. Even though there was no incidence of human glanders during this survey period, occupational exposure will continue to remain a serious concern and a key risk factor. Therefore, we emphasize the need for intersectoral collaboration and coordination among veterinary, human, and public health authorities for continuous surveillance and monitoring of human glanders under one health concept.


Asunto(s)
Muermo/sangre , Exposición Profesional/estadística & datos numéricos , Zoonosis/sangre , Animales , Anticuerpos Antibacterianos/sangre , Burkholderia mallei/inmunología , Ensayo de Inmunoadsorción Enzimática , Muermo/transmisión , Caballos , Humanos , Salud Única , Salud Pública
17.
J Equine Vet Sci ; 93: 103193, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32972675

RESUMEN

Wound healing in horses is complicated by the excessive growth of granulation tissue, commonly known as proud flesh and is similar to keloids in human beings. At present, there is no satisfactory treatment for proud flesh in horses. In this study, we, for the first time, demonstrated that leaf extract of Aerva javanica suppresses excessive growth of granulation tissue in horses. Many plant flavonoids are claimed to have antiproliferative properties. Kaempferol is a natural flavonoid containing 3-hydroxy flavone backbone found in many plants in its aglycone form and attached with various sugars. Ecdysteroids are steroidal analogs of invertebrate steroidal hormones found in plants. Both flavonoids and ecdysteroids accumulate more in plants during abiotic stress. We hypothesized that Aerva javanica may have high levels of ecdysteroids and kaempferols for surviving in stressful conditions of desert. Those kaempferols may suppress the growth of granulation tissue by their antiangiogenesis property. Ecdysteroids may control the larvae of habronema if associated with proud flesh. Extract was prepared using solvent-based fractionation and silica gel column flash chromatography. Application of the leaf extract in horses suppressed growth of granulation tissue along with restoration of normal skin function. Various purification steps and mass spectrometry were used to identify the active components in the study.


Asunto(s)
Amaranthaceae , Enfermedades de los Caballos , Queloide , Animales , Tejido de Granulación , Caballos , Queloide/veterinaria , Extractos Vegetales/farmacología , Cicatrización de Heridas
18.
Transbound Emerg Dis ; 67(3): 1062-1067, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31880100

RESUMEN

Porcine circovirus type 3 (PCV3), a novel circovirus, has been reported recently from major swine growing countries globally, and the virus is associated with diseases like porcine dermatitis, nephropathy syndrome and reproductive failure. This report describes the identification of PCV3 associated with reproductive failure in sows and piglet mortality and circulation of the virus in healthy pigs in India. The pathological changes in various tissues from stillborn piglet and characterization of the virus genomes were reported. The genome sequences of Indian PCV3 strains showed 91.4%-99.8% nucleotide identity with other sequences of PCV3 strains circulating worldwide. The phylogenetic analysis showed clustering of Indian strains into a separate group with the isolate from USA (MN/2016) under PCV3a genotype. The results confirmed the circulation of PCV3 in Indian pigs and its association with clinical cases. This study speculates emergence of PCV3 as an important pig pathogen in the country, which warrants the thorough investigation on PCV3 epidemiology, pathogenesis and to implement the control measures.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/genética , Genoma Viral/genética , Reproducción , Enfermedades de los Porcinos/virología , Animales , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/mortalidad , Infecciones por Circoviridae/virología , Circovirus/aislamiento & purificación , Femenino , Genotipo , India/epidemiología , Filogenia , Mortinato/veterinaria , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/mortalidad
19.
J Equine Vet Sci ; 94: 103237, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33077064

RESUMEN

The present study was conducted with the hypothesis that addition of cholesterol to the extender would stabilize the sperm membranes by increasing the cholesterol-to-phospholipid (C:P) ratio and would result in an improved post-thaw semen quality and reduce oxidative stress in the jack (Martina franca) semen. Forty-eight ejaculates from six jacks were collected and analyzed for the present study. The freshly collected semen sample of each jack stallion was divided into five equal fractions after addition of the primary extender without cholesterol-loaded cyclodextrin (CLC) (C) and with 1, 1.5, 2, and 3 mg/mL CLC to obtain 120 × 106 sperm/mL spermatozoa concentration. The semen was cryopreserved using customized freezing protocols. Evaluation of seminal parameters, the C:P ratio, and the oxidative status of jack spermatozoa was analyzed at all stages of cryopreservation. The oxidative status in the jack semen was evaluated by measuring malondialdehyde, glutathione and total antioxidant capacity levels. The results indicated that the mean percent values for various seminal quality parameters and the oxidative parameters were found to be significantly higher (P < .05) in CLC-treated groups with the highest values for 2 mg of CLC/120 × 106 spermatozoa. In conclusion, the present study revealed that the supplementation of CLC before cryopreservation has significantly reduced the oxidative stress and also increased the C:P ratio during semen cryopreservation process. Furthermore, a reduction in lipid peroxidation levels, reduced damage to the sperm plasma and acrosome membranes and improvement in the post-thaw sperm integrity as well as stability were recorded.


Asunto(s)
Ciclodextrinas , Preservación de Semen , Animales , Colesterol , Criopreservación/veterinaria , Crioprotectores/farmacología , Ciclodextrinas/farmacología , Suplementos Dietéticos , Caballos , Masculino , Estrés Oxidativo , Fosfolípidos , Análisis de Semen/veterinaria , Preservación de Semen/veterinaria , Motilidad Espermática , Espermatozoides
20.
Transbound Emerg Dis ; 67(3): 1336-1348, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31916415

RESUMEN

Equine glanders is an infectious and notifiable bacterial disease caused by Burkholderia mallei. The disease has been reported in South American, African and Asian countries including India. Here, we present the outcome of glanders serosurveillance carried out between January 2015 and December 2018 to know the status of equine glanders among different states in India. A total of 102,071 equid sera from 299 districts of twenty-one states and one union territory were tested for glanders. Samples were screened with Hcp1 indirect ELISA followed by confirmatory diagnosis by CFT. During this four-year surveillance, a total of 932 glanders-positive cases were detected from 120 districts of 12 states. The study also revealed increasing trend of glanders from 2016 onwards with maximum occurrence in northern India. Overall seroprevalence ranged between 0.62% (95% CI, 0.52-0.72) and 1.145% (95% CI, 1.03-1.25). Seasonal shifting from winter to summer (March to June) coincided with highest number glanders incidence with corresponding seroprevalences of 1.2% (95% CI, 1.09-1.30). The present surveillance unveils territorial ingression of glanders to six states like Jammu & Kashmir, Gujarat, Rajasthan, Madhya Pradesh, Delhi and Tamil Nadu. In addition, re-emerging cases have been reported in Maharashtra, Haryana and Punjab after a gap of 10 years. Lack of awareness, little veterinary care and unrestricted movement of equids across state borders might have led to the introduction and establishment of the infection to these states. We believe that information from this study will provide a baseline data on glanders for devising surveillance and control strategies in India. Being a zoonotic disease, the persistence of glanders poses a potential threat to occupationally exposed humans especially equine handlers and veterinarians. Therefore, targeted surveillance of human population from each glanders outbreak is also recommended.


Asunto(s)
Muermo/epidemiología , Animales , Burkholderia mallei , Brotes de Enfermedades , Ensayo de Inmunoadsorción Enzimática , Muermo/patología , Caballos , Humanos , India/epidemiología , Estudios Retrospectivos , Estudios Seroepidemiológicos , Zoonosis/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA