Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36236399

RESUMEN

Mental workload (MW) represents the amount of brain resources required to perform concurrent tasks. The evaluation of MW is of paramount importance for Advanced Driver-Assistance Systems, given its correlation with traffic accidents risk. In the present research, two cognitive tests (Digit Span Test-DST and Ray Auditory Verbal Learning Test-RAVLT) were administered to participants while driving in a simulated environment. The tests were chosen to investigate the drivers' response to predefined levels of cognitive load to categorize the classes of MW. Infrared (IR) thermal imaging concurrently with heart rate variability (HRV) were used to obtain features related to the psychophysiology of the subjects, in order to feed machine learning (ML) classifiers. Six categories of models have been compared basing on unimodal IR/unimodal HRV/multimodal IR + HRV features. The best classifier performances were reached by the multimodal IR + HRV features-based classifiers (DST: accuracy = 73.1%, sensitivity = 0.71, specificity = 0.69; RAVLT: accuracy = 75.0%, average sensitivity = 0.75, average specificity = 0.87). The unimodal IR features based classifiers revealed high performances as well (DST: accuracy = 73.1%, sensitivity = 0.73, specificity = 0.73; RAVLT: accuracy = 71.1%, average sensitivity = 0.71, average specificity = 0.85). These results demonstrated the possibility to assess drivers' MW levels with high accuracy, also using a completely non-contact and non-invasive technique alone, representing a key advancement with respect to the state of the art in traffic accident prevention.


Asunto(s)
Conducción de Automóvil , Accidentes de Tránsito , Electrocardiografía , Humanos , Aprendizaje Automático , Carga de Trabajo
2.
G Ital Nefrol ; 41(4)2024 Aug 26.
Artículo en Italiano | MEDLINE | ID: mdl-39243415

RESUMEN

The arteriovenous fistula (AVF) represents the favorite vascular access in individuals with chronic kidney disease (CKD). Because AVF is a guarantee of survival for these patients, proper surgical packing and a timely follow-up program is crucial. Although a good objective examination of the limb site of FAV provides useful information both in planning the fistula surgery and in its surveillance and monitoring, it is now well established that the advent of instrumental diagnostics (ultrasonography, digital angiography, Angio-TC, MRI) has contributed significantly to improving primary and secondary patency of FAV and early diagnosis of vascular access complications. In this area, clinical thermography, a noninvasive and nondestructive diagnostic technique for assessing minute surface temperature differences, has shown good potential for the assessment of AVF. In fact, thermographic analysis of a limb site of AVF shows an increase in temperature at the site of the anastomosis and along the course of the arterialized vein. In this article we report our experience on the use of thermography in preoperative evaluation and postoperative surgical packing of an AVF. Further studies could validate the use of clinical thermography as a diagnostic technique to be used in the field of hemodialysis vascular accesses.


Asunto(s)
Derivación Arteriovenosa Quirúrgica , Diálisis Renal , Termografía , Termografía/métodos , Humanos , Masculino , Persona de Mediana Edad
3.
Biomimetics (Basel) ; 8(6)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37887606

RESUMEN

Social robots represent a valid opportunity to manage the diagnosis, treatment, care, and support of older people with dementia. The aim of this study is to validate the Mini-Mental State Examination (MMSE) test administered by the Pepper robot equipped with systems to detect psychophysical and emotional states in older patients. Our main result is that the Pepper robot is capable of administering the MMSE and that cognitive status is not a determinant in the effective use of a social robot. People with mild cognitive impairment appreciate the robot, as it interacts with them. Acceptability does not relate strictly to the user experience, but the willingness to interact with the robot is an important variable for engagement. We demonstrate the feasibility of a novel approach that, in the future, could lead to more natural human-machine interaction when delivering cognitive tests with the aid of a social robot and a Computational Psychophysiology Module (CPM).

4.
J Clin Med ; 11(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36431267

RESUMEN

Cerebral palsy (CP) is a non-progressive neurologic condition that causes gait limitations, spasticity, and impaired balance and coordination. Robotic-assisted gait training (RAGT) has become a common rehabilitation tool employed to improve the gait pattern of people with neurological impairments. However, few studies have demonstrated the effectiveness of RAGT in children with CP and its neurological effects through portable neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS). The aim of the study is to evaluate the neurophysiological processes elicited by RAGT in children with CP through fNIRS, which was acquired during three sessions in one month. The repeated measure ANOVA was applied to the ß-values delivered by the General Linear Model (GLM) analysis used for fNIRS data analysis, showing significant differences in the activation of both prefrontal cortex (F (1.652, 6.606) = 7.638; p = 0.022), and sensorimotor cortex (F (1.294, 5.175) = 11.92; p = 0.014) during the different RAGT sessions. In addition, a cross-validated Machine Learning (ML) framework was implemented to estimate the gross motor function measure (GMFM-88) from the GLM ß-values, obtaining an estimation with a correlation coefficient r = 0.78. This approach can be used to tailor clinical treatment to each child, improving the effectiveness of rehabilitation for children with CP.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36429941

RESUMEN

Cerebral palsy (CP) is a non-progressive neurologic pathology representing a leading cause of spasticity and concerning gait impairments in children. Robotic-assisted gait training (RAGT) is widely employed to treat this pathology to improve children's gait pattern. Importantly, the effectiveness of the therapy is strictly related to the engagement of the patient in the rehabilitation process, which depends on his/her psychophysiological state. The aim of the study is to evaluate the psychophysiological condition of children with CP during RAGT through infrared thermography (IRT), which was acquired during three sessions in one month. A repeated measure ANOVA was performed (i.e., mean value, standard deviation, and sample entropy) extracted from the temperature time course collected over the nose and corrugator, which are known to be indicative of the psychophysiological state of the individual. Concerning the corrugator, significant differences were found for the sample entropy (F (1.477, 5.907) = 6.888; p = 0.033) and for the mean value (F (1.425, 5.7) = 5.88; p = 0.047). Regarding the nose tip, the sample entropy showed significant differences (F (1.134, 4.536) = 11.5; p = 0.041). The findings from this study suggests that this approach can be used to evaluate in a contactless manner the psychophysiological condition of the children with CP during RAGT, allowing to monitor their engagement to the therapy, increasing the benefits of the treatment.


Asunto(s)
Parálisis Cerebral , Trastornos Neurológicos de la Marcha , Procedimientos Quirúrgicos Robotizados , Humanos , Niño , Femenino , Masculino , Parálisis Cerebral/diagnóstico por imagen , Parálisis Cerebral/rehabilitación , Terapia por Ejercicio/métodos , Marcha/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA