RESUMEN
Brain aging is a major risk factor for cognitive diseases such as Alzheimer's disease (AD) and vascular dementia. The rate of aging and age-related pathology are modulated by stress responses and repair pathways that gradually decline with age. However, recent reports indicate that exceptional longevity sustains and may even enhance the stress response. Whether normal and exceptional aging result in either attenuated or enhanced stress responses across all organs is unknown. This question arises from our understanding that biological age differs from chronological age and evidence that the rate of aging varies between organs. Thus, stress responses may differ between organs and depend upon regenerative capacity and ability to manage damaged proteins and proteotoxicity. To answer these questions, we assessed age-dependent changes in brain stress responses with normally aged wild type and long-lived Dwarf mice. Results from this study show that normal aging unfavorably impacts activation of the brain heat shock (HS) axis with key changes noted in the transcription factor, HSF1, and its regulation. Exceptional aging appears to preserve and strengthen many elements of HSF1 activation in the brain. These results support the possibility that reconstitution of aging brain stress responses requires a multi-factorial approach that addresses HSF1 protein levels, its DNA binding, and regulatory elements such as phosphorylation and protein interactions.
Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Ratones , Animales , Proteínas de Unión al ADN/genética , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción/genética , Envejecimiento/metabolismo , Encéfalo/metabolismoRESUMEN
BACKGROUND/AIMS: ER-Stress and activation of unfolded protein response belong to the major factors involved in chemoresistance in cancer cells. In this study we investigated the effect of shikonin on the survival of acute myeloid leukemia cells and the role of ER-stress protein ERP57, a protein disulfide isomerase, in improvement of chemotherapy. METHODS: Using MTT assay we studied cytotoxic effects of shikonin on HL-60 cells. The flow cytometry was adopted to examine the shikonin induced mode of cell death in HL-60 cells. The overall protein expression alteration resulting from shikonin treatment was investigated using proteomics methods. Western blotting was performed to quantify the alteration in protein expression in HL-60 after shikonin treatment. Silencing and overexpression studies were carried out to highlight the therapeutic role of ERP57 in shikonin effect on AML cells. RESULTS: Shikonin induces apoptosis in HL-60 cells without significant effect on Primary cells from healthy volunteers. The apoptotic effect was dose and time dependent and was accompanied by strong alteration in cell proteome. Among the proteins targeted by shikonin, ERP57 was significantly downregulated in HL-60 after treatment. Compared to healthy control ERP57 was found to be highly expressed in AML cell line HL60 and was downregulated after shikonin treatment. Overexpression of ERP57 protected HL-60 from shikonin induced apoptosis, whereas knockdown of ERP57 expression resulted in increase in shikonin induced apoptosis. CONCLUSIONS: Our results demonstrate that ERP57 plays a crucial role in resistance towards shikonin induced apoptosis in AML cells. Targeting of ERP57 might offer a new therapeutic option for the treatment of acute myeloid leukemia.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Naftoquinonas/farmacología , Proteína Disulfuro Isomerasas/metabolismo , Enfermedad Aguda , Antibacterianos/farmacología , Antineoplásicos/química , Apoptosis/genética , Western Blotting , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Electroforesis en Gel Bidimensional , Estrés del Retículo Endoplásmico/efectos de los fármacos , Citometría de Flujo , Células HL-60 , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Estructura Molecular , Naftoquinonas/química , Proteína Disulfuro Isomerasas/genética , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Proteómica/métodos , Interferencia de ARN , Factores de Tiempo , Tunicamicina/farmacologíaRESUMEN
Heat shock factor 1, HSF1, is one of several family members that recognize repeated nGAAn sequences associated with the heat shock element of heat shock and other genes. This transactivator is activated from a monomeric to trimeric form by oxidative, thermal and other stressors. Various studies show that HSF1 levels increase with cancer and decrease with aging and neurodegenerative disorders. It has a role in development as well as infections and inflammation. HSF1 is regulated by post-translational modifications and interactions with other proteins such as HSBP-1. Given its central importance in stress responsivity, various methods have been developed to identify HSF1 and its interacting partners. To date, multiple studies use conventional immunoprecipitation of HSF1 with commercially available antibodies which work well in cell lines but not whole tissue extracts. To remedy this shortfall, we developed a technique to retrieve activated HSF1 with an oligonucleotide link to a magnetic bead. The method captures HSF1 using a DNA sequence specific for HSF1 binding sites on promoter of heat shock genes. Confirmation of tissue derived HSF1 is identified using antibody against HSF1. The magnetic beads conjugated with DNA sequence specific to HSF1 binding was capable of yielding a reproducible band of high signal intensity with low background after native gel electrophoresis and ECL. Thus, the trimeric form of HSF1 can be isolated from tissue with magnetic beads conjugated with a short DNA sequence specific to HSF1 binding. This new method to identify HSF1 is economic, easy, and reproducible and does not require specialized equipment. It overcomes limitations of HSF1 tissue extraction by conventional immunoprecipitation, thus allowing for new approaches to understand HSF1 function in animal and human tissue.â¢HSF1 is a transcription factor that homotrimerize and binds to a conserved regulatory site, the heat shock element (HSE), consists of repeats of pentameric sequence '5-nGAAn-3' present in the promoters of inducible heat shock protein genes.â¢This protocol allows isolation of trimeric forms of HSF1 from tissue lysate using magnetic beads conjugated with a short DNA sequence with specific binding to HSF1.â¢This method is easy, economic and does not require unique instrumentation.
RESUMEN
How the heat shock axis, repair pathways, and proteostasis impact the rate of aging is not fully understood. Recent reports indicate that normal aging leads to a 50% change in several regulatory elements of the heat shock axis. Most notably is the age-dependent enhancement of inhibitory signals associated with accumulated heat shock proteins and hyper-acetylation associated with marked attenuation of heat shock factor 1 (HSF1)-DNA binding activity. Because exceptional longevity is associated with increased resistance to stress, this study evaluated regulatory check points of the heat shock axis in liver extracts from 12 months and 24 months long-lived Ames dwarf mice and compared these findings with aging wild-type mice. This analysis showed that 12M dwarf and wild-type mice have comparable stress responses, whereas old dwarf mice, unlike old wild-type mice, preserve and enhance activating elements of the heat shock axis. Old dwarf mice thwart negative regulation of the heat shock axis typically observed in usual aging such as noted in HSF1 phosphorylation at Ser307 residue, acetylation within its DNA binding domain, and reduction in proteins that attenuate HSF1-DNA binding. Unlike usual aging, dwarf HSF1 protein and mRNA levels increase with age and further enhance by stress. Together these observations suggest that exceptional longevity is associated with compensatory and enhanced HSF1 regulation as an adaptation to age-dependent forces that otherwise downregulate the heat shock axis.
Asunto(s)
Respuesta al Choque Térmico , Longevidad , Envejecimiento/genética , Animales , Longevidad/genética , Ratones , Fosforilación , ProteostasisRESUMEN
Aging is a complex process associated with progressive damage that leads to cellular dysfunction often accompanied by frailty and age-related diseases. Coping with all types of physiologic stress declines with age. While representing a primordial, cross-species response in poikilo- and homeotherms, the age-dependent perturbation of the stress response is more complex than previously thought. This short review examines how age influences the stress axis at multiple levels that involve both activating and attenuating pathways.
Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Factores de Transcripción/metabolismoRESUMEN
Age-dependent perturbation of the cellular stress response affects proteostasis and other key functions relevant to cellular action and survival. Central to age-related changes in the stress response is loss of heat shock factor 1 (HSF1)-DNA binding and transactivation properties. This report elucidates how age alters different checkpoints of HSF1 activation related to posttranslational modification and protein interactions. When comparing liver extracts from middle aged (12 M) and old (24 M) mice, significant differences are found in HSF1 phosphorylation and acetylation. HSF1 protein levels and messenger RNA decline with age, but its protein levels are stress-inducible and exempt from age-dependent changes. This surprising adaptive change in the stress response has additional implications for aging and chronic physiological stress that might explain an age-dependent dichotomy of HSF1 protein levels that are low in neurodegeneration and elevated in cancer.
Asunto(s)
Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico , Acetilación , Factores de Edad , Animales , Puntos de Control del Ciclo Celular , Hígado/metabolismo , Ratones , Estrés Oxidativo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteostasis , ARN Mensajero/metabolismo , Estrés Fisiológico , Activación TranscripcionalRESUMEN
One of the major challenges associated with modeling the influence of the cellular microenvironment on cell growth and differentiation is finding suitable substrates for growing the cells in a manner that recapitulates the cell-cell and cell-microenvironmental interactions in vitro. As one approach to address this challenge, we have developed graphene oxide (GO)-3D mesh with tunable hardness and porosity for application in cell culture systems. The synthetic method of GO-3D mesh is simple, easily reproducible, and low cost. The foundation of the method is the combination of poly(ethylene)(glycol) (PEG) and GO together with a salt-leaching approach (NaCl) in addition to a controlled application of heat during the synthetic process to tailor the mechanical properties, porosity, and pore-size distribution of the resulting GO-3D mesh. With this methodology, the hydrogel formed by PEG and GO generates a microporous mesh in the presence of the NaCl, leading to the formation of a stable 3D scaffold after extensive heating and washing. Varying the ratio of NaCl to GO controls porosity, pore size, and pore connectivity for the GO-3D mesh. When the porosity is less than 90%, with an increasing ratio of NaCl to GO, the number of pores increases with good interconnectivity. The 3D-mesh showed excellent biocompatibility with vascular cells which can take on a morphology comparable to that observed in vessels in vivo. Cell proliferation and gene expression can be determined from cells grown on the GO-3D scaffold, providing a valuable tool for investigating cell-microenvironmental changes. The GO-3D mesh described results from the synergy of the combined chemical properties of the PEG and GO with the salt-leaching methodology to generate a unique and flexible mesh that can be modified and optimized for a variety of in vitro applications.
RESUMEN
Clear cell renal cell carcinoma (ccRCC) is the most malignant tumor in the adult kidney. Many factors are responsible for the development and progression of this tumor. Increased reactive oxygen species accumulation and altered redox status have been observed in cancer cells and this biochemical property of cancer cells can be exploited for therapeutic benefits. In earlier work we identified and characterize Protein DJ-1 (PARK7) as an oxidative stress squevenger in renal cells exposed to oxidative stress. To investigate whether the PARK7 or other oxidative stress proteins play a role in the renal cell carcinoma and its sensitivity or resistance to cytostatic drug treatment, differential proteomics analysis was performed with a cell model for clear cell renal carcinoma (Caki-2 and A498). Caki-2 cells were treated with cisplatin and differentially expressed proteins were investigated. The cisplatin treatment resulted in an increase in reactive oxygen species accumulation and ultimately apoptosis of Caki-2 and A498 cells. In parallel, the apoptotic effect was accompanied by a significant downregulation of antioxidant proteins especially PARK7. Knockdown of PARK7 using siRNA and overexpression using plasmid highlights the role of PARK7 as a key player in renal cell carcinoma response to cisplatin induced apoptosis. Overexpression of PARK7 resulted in significant decrease in apoptosis, whereas knockdown of the protein was accompanied by an increase in apoptosis in Caki-2 and A498 cells treated with cisplatin. These results highlights for the first time the important role of PARK7 in cisplatin induced apoptosis in clear renal cell carcinoma cells.
Asunto(s)
Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma de Células Renales/patología , Cisplatino/farmacología , Resistencia a Antineoplásicos , Neoplasias Renales/patología , Proteína Desglicasa DJ-1/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Biología Computacional , Regulación hacia Abajo/efectos de los fármacos , Humanos , Proteoma/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Resistance to chemotherapeutic drugs is the major hindrance in the successful cancer therapy. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) family of ligands, which initiates apoptosis in cancer cells through interaction with the death receptors DR4 and DR5. TRAIL is perceived as an attractive chemotherapeutic agent as it specifically targets cancer cells while sparing the normal cells. However, TRAIL therapy has a major limitation as a large number of the cancer develop resistance toward TRAIL and escape from the destruction by the immune system. Therefore, elucidation of the molecular targets and signaling pathways responsible for TRAIL resistance is imperative for devising effective therapeutic strategies for TRAIL resistant cancers. Although, various molecular targets leading to TRAIL resistance are well-studied, recent studies have implicated that the contribution of some key cellular processes toward TRAIL resistance need to be fully elucidated. These processes primarily include aberrant protein synthesis, protein misfolding, ubiquitin regulated death receptor expression, metabolic pathways, epigenetic deregulation, and metastasis. Novel synthetic/natural compounds that could inhibit these defective cellular processes may restore the TRAIL sensitivity and combination therapies with such compounds may resensitize TRAIL resistant cancer cells toward TRAIL-induced apoptosis. In this review, we have summarized the key cellular processes associated with TRAIL resistance and their status as therapeutic targets for novel TRAIL-sensitizing agents.
RESUMEN
Cancer stem cells (CSCs) are responsible for aggressive tumor growth, metastasis and therapy resistance. In this study, we evaluated the effects of Shikonin (Shk) on breast cancer and found its anti-CSC potential. Shk treatment decreased the expression of various epithelial to mesenchymal transition (EMT) and CSC associated markers. Kinase profiling array and western blot analysis indicated that Shk inhibits STAT3, FAK and Src activation. Inhibition of these signaling proteins using standard inhibitors revealed that STAT3 inhibition affected CSCs properties more significantly than FAK or Src inhibition. We observed a significant decrease in cell migration upon FAK and Src inhibition and decrease in invasion upon inhibition of STAT3, FAK and Src. Combined inhibition of STAT3 with Src or FAK reduced the mammosphere formation, migration and invasion more significantly than the individual inhibitions. These observations indicated that the anti-breast cancer properties of Shk are due to its potential to inhibit multiple signaling proteins. Shk also reduced the activation and expression of STAT3, FAK and Src in vivo and reduced tumorigenicity, growth and metastasis of 4T1 cells. Collectively, this study underscores the translational relevance of using a single inhibitor (Shk) for compromising multiple tumor-associated signaling pathways to check cancer metastasis and stem cell load.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Naftoquinonas/farmacología , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Adulto , Antiinflamatorios no Esteroideos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Persona de Mediana Edad , Invasividad Neoplásica/patología , Células Madre Neoplásicas , Transducción de Señal , Esferoides Celulares/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Células Tumorales CultivadasRESUMEN
The natural polyphenolic alkanone (6)-gingerol (6G) has established anti-inflammatory and antitumoral properties. However, its precise mechanism of action in myeloid leukemia cells is unclear. In this study, we investigated the effects of 6G on myeloid leukemia cells in vitro and in vivo. The results of this study showed that 6G inhibited proliferation of myeloid leukemia cell lines and primary myeloid leukemia cells while sparing the normal peripheral blood mononuclear cells, in a concentration- and time-dependent manner. Mechanistic studies using U937 and K562 cell lines revealed that 6G treatment induced reactive oxygen species (ROS) generation by inhibiting mitochondrial respiratory complex I (MRC I), which in turn increased the expression of the oxidative stress response-associated microRNA miR-27b and DNA damage. Elevated miR-27b expression inhibited PPARγ, with subsequent inhibition of the inflammatory cytokine gene expression associated with the oncogenic NF-κB pathway, whereas the increased DNA damage led to G2/M cell cycle arrest. The 6G induced effects were abolished in the presence of anti-miR-27b or the ROS scavenger N-acetylcysteine. In addition, the results of the in vivo xenograft experiments in mice indicated that 6G treatment inhibited tumor cell proliferation and induced apoptosis, in agreement with the in vitro studies. Our data provide new evidence that 6G-induced myeloid leukemia cell death is initiated by reactive oxygen species and mediated through an increase in miR-27b expression and DNA damage. The dual induction of increased miR-27b expression and DNA damage-associated cell cycle arrest by 6G may have implications for myeloid leukemia treatment.