Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(17): 8350-8359, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30944218

RESUMEN

G-quadruplexes (GQs) can adopt diverse structures and are functionally implicated in transcription, replication, translation, and maintenance of telomere. Their conformational diversity under physiological levels of mechanical stress, however, is poorly understood. We used single-molecule fluorescence-force spectroscopy that combines fluorescence resonance energy transfer with optical tweezers to measure human telomeric sequences under tension. Abrupt GQ unfolding with K+ in solution occurred at as many as four discrete levels of force. Added to an ultrastable state and a gradually unfolding state, there were six mechanically distinct structures. Extreme mechanical diversity was also observed with Na+, although GQs were mechanically weaker. Our ability to detect small conformational changes at low forces enabled the determination of refolding forces of about 2 pN. Refolding was rapid and stochastically redistributed molecules to mechanically distinct states. A single guanine-to-thymine substitution mutant required much higher ion concentrations to display GQ-like unfolding and refolded via intermediates, contrary to the wild type. Contradicting an earlier proposal, truncation to three hexanucleotide repeats resulted in a single-stranded DNA-like mechanical behavior under all conditions, indicating that at least four repeats are required to form mechanically stable structures.


Asunto(s)
ADN/ultraestructura , Transferencia Resonante de Energía de Fluorescencia/métodos , G-Cuádruplex , Telómero/ultraestructura , ADN/química , Guanina/química , Humanos , Pinzas Ópticas , Secuencias Repetitivas de Ácidos Nucleicos , Telómero/química , Timina/química
2.
J Magn Reson Imaging ; 37(4): 944-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23086719

RESUMEN

PURPOSE: To examine the behavior of lipid olefinic and diallylic resonances as a function of PRESS (point resolved spectroscopy) echo time (TE) to determine an optimal long TE value for their measurement at 3 T. MATERIALS AND METHODS: Experiments were conducted on nine oils (almond, canola, cod liver, corn, linseed, peanut, sesame, sunflower, and walnut oil) and on vertebral and tibial bone marrow in vivo at 3 T. The methylene (or methyl + methylene), diallylic, and olefinic resonances were measured with PRESS with multiple TEs. RESULTS: J-coupling evolution effects on the olefinic and diallylic peaks appeared to be minimized when TE = 200 msec. The TE = 200 msec olefinic/methylene and diallylic/methylene peak area ratios calculated for each oil correlated well with ratios deduced from oil compositions in the literature (R(2) = 0.92 and 0.98 for the olefinic and diallylic protons, respectively). In addition, the relative amounts of bone marrow unsaturation of vertebral and tibial bone marrow inferred from the TE = 200 msec olefinic/(methyl + methylene) peak area ratio agreed with values estimated from the literature. CONCLUSION: A PRESS sequence with a long TE value of 200 msec is suitable for determining relative amounts of lipid unsaturation at 3 T.


Asunto(s)
Médula Ósea/química , Grasas Insaturadas en la Dieta/análisis , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Espectroscopía de Resonancia Magnética/métodos , Adulto , Alquenos/análisis , Aceite de Hígado de Bacalao/análisis , Humanos , Masculino , Fantasmas de Imagen , Aceites de Plantas/análisis , Columna Vertebral , Tibia
3.
Nanoscale ; 14(34): 12463-12475, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35980233

RESUMEN

Molecular motors often work in teams to move a cellular cargo. Yet measuring the forces exerted by each motor is challenging. Using a sensor made with denatured ssDNA and multi-color fluorescence, we measured picoNewtons of forces and nanometer distances exerted by individual constrained kinesin-1 motors acting together while driving a common microtubule in vitro. We find that kinesins primarily exerted less than 1 pN force, even while the microtubule is bypassing artificial obstacles of 20-100 nanometer size. Occasionally, individual forces increase upon encountering obstacles, although at other times they do not, with the cargo continuing in a directional manner. Our high-throughput technique, which can measure forces by many motors simultaneously, is expected to be useful for many different types of molecular motors.


Asunto(s)
Cinesinas , Microtúbulos , Transporte Biológico , Fluorescencia , Microtúbulos/metabolismo
4.
Elife ; 102021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33739282

RESUMEN

Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína de Replicación A/metabolismo , Thermoplasmales/enzimología , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo , Sitios de Unión , Pinzas Ópticas
5.
Elife ; 82019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31670658

RESUMEN

How cargoes move within a crowded cell-over long distances and at speeds nearly the same as when moving on unimpeded pathway-has long been mysterious. Through an in vitro force-gliding assay, which involves measuring nanometer displacement and piconewtons of force, we show that multiple mammalian kinesin-1 (from 2 to 8) communicate in a team by inducing tension (up to 4 pN) on the cargo. Kinesins adopt two distinct states, with one-third slowing down the microtubule and two-thirds speeding it up. Resisting kinesins tend to come off more rapidly than, and speed up when pulled by driving kinesins, implying an asymmetric tug-of-war. Furthermore, kinesins dynamically interact to overcome roadblocks, occasionally combining their forces. Consequently, multiple kinesins acting as a team may play a significant role in facilitating smooth cargo motion in a dense environment. This is one of few cases in which single molecule behavior can be connected to ensemble behavior of multiple motors.


The inside of a cell is a crowded space, full of proteins and other molecules. Yet, the molecular motors that transport some of those molecules within the cell move at the same speed as they would in pure water ­ about one micrometer per second. How the molecular motors could achieve such speeds in crowded cells was unclear. Nevertheless, Tjioe et al. suspected that the answer might be related to how multiple motors work together. Molecular motors move by walking along filaments inside the cell and pulling their cargo from one location to another. Other molecules that bind to the filaments should, in theory, act like "roadblocks" and impede the movement of the cargo. Tjioe et al. studied a motor protein called kinesin, which walks on filaments called microtubules. But instead of looking at these motors moving along microtubules inside a cell, Tjioe et al. used a simpler system where the cell was eliminated, and all parts were purified. Specifically, Tjioe et al. tethered purified motors to a piece of glass and then observed them under an extremely accurate microscope as they moved free-floating, fluorescently labelled microtubules. The microtubules, in this scenario, were acting like cargoes, where many kinesins could bind. Each kinesin motor also had a small chemical tag that could emit light. By following the movement of the lights, it was possible to calculate what each kinesin was doing and how the cargo moved. When more than one kinesin molecule was acting, the tension and speed of one kinesin affected the movement of the others. In any group of kinesins, about two-thirds of kinesin pulled the cargo, and unexpectedly, about one-third tended to resist and slow the cargo. These latter kinesins were moved along with the group without actually driving the cargo. These resisting kinesins did come off more rapidly than the driving kinesins, meaning the cargo should be able to quickly bypass roadblocks. This would help to keep the whole group travelling in the right direction at a steady pace.


Asunto(s)
Cinesinas/metabolismo , Animales , Transporte Biológico , Fenómenos Biomecánicos , Ratones , Microtúbulos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA