Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Am Chem Soc ; 144(15): 6894-6906, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35380826

RESUMEN

A series of aromatic helix-sheet-helix oligoamide foldamers composed of several different photosensitive diazaanthracene units have been designed and synthesized. Molecular objects up to 7 kDa were straightforwardly produced on a 100 mg scale. Nuclear magnetic resonance and crystallographic investigations revealed that helix-sheet-helix architectures can adopt one or two distinct conformations. Sequences composed of an even number of turn units were found to fold in a canonical symmetrical conformation with two helices of identical handedness stacked above and below the sheet segment. Sequences composed of an odd number of turns revealed a coexistence between a canonical fold with helices of opposite handedness and an alternate fold with a twist within the sheet and two helices of identical handedness. The proportions between these species could be manipulated, in some cases quantitatively, being dependent on solvent, temperature, and absolute control of helix handedness. Diazaanthracene units were shown to display distinct reactivity toward [4 + 4] photocycloadditions according to the substituent in position 9. Their organization within the sequences was programmed to allow photoreactions to take place in a specific order. Reaction pathways and kinetics were deciphered and product characterized, demonstrating the possibility to orchestrate successive photoreactions so as to avoid orphan units or to deliberately produce orphan units at precise locations. Strong cooperative effects were observed in which the photoreaction rate was influenced by the presence (or absence) of photoadducts in the structure. Multiple photoreactions within the aromatic sheet eventually lead to structure lengthening and stiffening, locking conformational equilibria. Photoproducts could be thermally reverted.


Asunto(s)
Amidas , Amidas/química , Espectroscopía de Resonancia Magnética , Conformación Molecular
2.
Chemistry ; 27(66): 16512-16522, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34632666

RESUMEN

A linear double pyridinium-terminated thread comprising a central chalcone moiety is shown to provide two independent binding sites with similar affinity for cucurbit[7]uril (CB7) macrocycles in water as judged from NMR, UV-Visible and fluorescence spectroscopies. Association results in [2] and [3]pseudorotaxanes, which are both pH and photosensitive. Switching from the neutral chalcone to the cationic flavylium form upon irradiation at 365 nm under acidic conditions provided an enhanced CB7 association (K1:1 increases from 1.2×105  M-1 to 1.5×108  M-1 ), limiting spontaneous on-thread cucurbituril shuttling. This co-conformational change in the [2]pseudorotaxane is reversible in the dark with kobs =4.1×10-4  s-1 . Threading the flavylium moiety into CB7 leads to a dramatic increase in the fluorescence quantum yield, from 0.29 in the free axle to 0.97 in the [2]pseudorotaxane and 1.0 in the [3]pseudorotaxane.


Asunto(s)
Rotaxanos , Hidrocarburos Aromáticos con Puentes , Concentración de Iones de Hidrógeno , Imidazoles , Agua
3.
Beilstein J Org Chem ; 15: 2801-2811, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31807215

RESUMEN

Free calcium ion concentration is known to govern numerous biological processes and indeed calcium acts as an important biological secondary messenger for muscle contraction, neurotransmitter release, ion-channel gating, and exocytosis. As such, the development of molecules with the ability to instantaneously increase or diminish free calcium concentrations potentially allows greater control over certain biological functions. In order to permit remote regulation of Ca2+, a selective BAPTA-type synthetic receptor / host was integrated with a photoswitchable azobenzene motif, which upon photoirradiation would enhance (or diminish) the capacity to bind calcium upon acting on the conformation of the adjacent binding site, rendering it a stronger or weaker binder. Photoswitching was studied in pseudo-physiological conditions (pH 7.2, [KCl] = 100 mM) and dissociation constants for azobenzene cis- and trans-isomers have been determined (0.230 µM and 0.102 µM, respectively). Reversible photoliberation/uptake leading to a variation of free calcium concentration in solution was detected using a fluorescent Ca2+ chemosensor.

4.
Org Biomol Chem ; 15(20): 4367-4374, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28474718

RESUMEN

Structural integration of two synthetic water soluble receptors for Ca2+ and Mg2+, namely 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and o-aminophenol-N,N,O-triacetic acid (APTRA), respectively, gave novel di- and tritopic ionophores (1 and 2). As Mg2+ and Ca2+ cannot be simultaneously complexed by the receptors, allosteric control of complexation results. Potentiometric measurements established stepwise protonation constants and showed high affinity for Ca2+ (log K = 6.08 and 8.70 for 1 and 2, respectively) and an excellent selectivity over Mg2+ (log K = 3.70 and 5.60 for 1 and 2, respectively), which is compatible with magnesium-calcium ion exchange. While ion-exchange of a single Mg2+ for a single Ca2+ is possible in both 1 and 2, the simultaneous binding of two Mg2+ by 2 appears prohibitive for replacement of these two ions by a single Ca2+. Ion-binding and exchange was further rationalized by DFT calculations.

5.
Angew Chem Int Ed Engl ; 56(6): 1566-1570, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27981689

RESUMEN

The light-triggered, programmable rupture of cell-sized vesicles is described, with particular emphasis on self-assembled polymersome capsules. The mechanism involves a hypotonic osmotic imbalance created by the accumulation of photogenerated species inside the lumen, which cannot be compensated owing to the low water permeability of the membrane. This simple and versatile mechanism can be adapted to a wealth of hydrosoluble molecules, which are either able to generate reactive oxygen species or undergo photocleavage. Ultimately, in a multi-compartmentalized and cell-like system, the possibility to selectively burst polymersomes with high specificity and temporal precision and to consequently deliver small encapsulated vesicles (both polymersomes and liposomes) is demonstrated.

6.
Analyst ; 141(10): 3090-7, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27094953

RESUMEN

A doubly pyrene-grafted bis-cyclometallated iridium complex with engineered electronically excited states demonstrates reversible electronic energy transfer between adjacent chromophores giving rise to extremely long-lived red luminescence in solution (τ = 480 µs). Time-resolved spectroscopic studies afforded determination of pertinent photophysical parameters including rates of energy transfer and energy distribution between constituent chromophores in the equilibrated excited molecule (ca. 98% on the organic chromophores). Incorporation into a nanostructured metal-oxide matrix (AP200/19) gave highly sensitive O2 sensing films, as the detection sensitivity was 200-300% higher than with the commonly used PtTFPP and approaches the sensitivity of the best O2-sensing dyes reported to date.

7.
Chemistry ; 21(40): 14002-10, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26270157

RESUMEN

Singlet oxygen ((1)O2) is an important reactive oxygen species in biology that has deleterious effects. Proteins constitute the main target of (1)O2 in cells. Several organisms are able to mount a transcriptional defense against (1)O2. ChrR and MBS are two proteins with Zn(Cys)2(His)2 zinc finger sites that are involved in the regulation of the defense against (1)O2. In this article, we investigate the reactivity of Zn⋅CPF, a Zn(Cys)2(His)2 classical ßßα zinc finger, with (1)O2. We show that Zn⋅CPF interacts with (1)O2 mainly by physical quenching using a combination of (1)O2 luminescence quenching and kinetic competition experiments. The chemical reaction, which accounts for 5% of the interaction, leads to oxidation of cysteines but not histidines. Primary photooxidation products, identified by HPLC and mass spectrometry, are sulfinate (75±5%) and disulfides (25±5%). The peptides that have a single cysteine thiolate oxidized into a sulfinate are still able to bind one equivalent Zn(2+) but with a dramatic reduction of the binding constant compared to Zn⋅CPF despite the preservation of the ßßα fold, as shown by NMR and CD titrations. Finally, Zn⋅CPF is compared to Zn⋅LTC, a treble clef Zn(Cys)4 zinc finger, to gain further insight into the behavior of zinc fingers toward (1)O2.


Asunto(s)
Cisteína/química , Histidina/química , Péptidos/química , Oxígeno Singlete/química , Cisteína/metabolismo , Histidina/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Oxidación-Reducción , Péptidos/metabolismo , Dedos de Zinc
8.
J Org Chem ; 80(2): 988-96, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25478745

RESUMEN

Photoirradiation of a hydrogen-bonded molecular complex comprising acyclic components, namely, a stoppered thread (1) with a central barbiturate motif and an optimized doubly anthracene-terminated acyclic Hamilton-like receptor (2b), leads to an interlocked architecture, which was isolated and fully characterized. The sole isolated interlocked photoproduct (Φ = 0.06) is a [2]rotaxane, with the dimerized anthracenes assuming a head-to-tail geometry, as evidenced by NMR spectroscopy and consistent with molecular modeling (PM6). A different behavior was observed on irradiating homologous molecular complexes 1⊂2a, 1⊂2b, and 1⊂2c, where the spacers of 2a, 2b, and 2c incorporated 3, 6, and 9 methylene units, respectively. While no evidence of interlocked structure formation was observed following irradiation of 1⊂2a, a kinetically labile rotaxane was obtained on irradiating the complex 1⊂2c, and ring slippage was revealed. A more stable [2]rotaxane was formed on irradiating 1⊂2b, whose capture is found to be fully reversible upon heating, thereby resetting the system, with some fatigue (38%) after four irradiation­thermal reversion cycles.


Asunto(s)
Antracenos/química , Rotaxanos/química , Rotaxanos/síntesis química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Procesos Fotoquímicos
9.
Chemistry ; 20(48): 15799-807, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25286882

RESUMEN

The design and synthesis of switchable molecular tweezers based on a luminescent terpy(Pt-salphen)2 (1; terpy=terpyridine) complex is reported. Upon metal coordination, the tweezers can switch from an open "W"-shaped conformation to a closed "U"-shaped form that is adapted for selective recognition of cations. Closing of the tweezers by metal coordination (M=Zn(2+), Cu(2+), Pb(2+), Fe(2+), Hg(2+)) was monitored by (1)H NMR and/or UV/Vis titrations. During the titration, exclusive formation of the 1:1 complex [M(1)] was observed, without appearance of an intermediate 1:2 complex [M(1)2]. The crystallographic structure of the 1:1 complex was obtained with Pb(2+) and showed a distorted helical structure. Selective intercalation of Hg(2+) cations by the closed "U" form was observed. The tweezers were reopened by selective metal decoordination of the terpyridine ligand by using tris(2-aminoethyl)amine (tren) as a competitive ligand without modification of the Pt-salphen complex. Detailed photophysical studies were performed on the open and closed tweezers. Structured emission was observed in the open form from the Pt-salphen moieties, with a high quantum yield and a long lifetime. The emission is slightly modified upon closing with 1 equivalent of Zn(2+) or Hg(2+), whereas a dramatic quenching was obtained upon intercalation of additional Hg(2+).

10.
Angew Chem Int Ed Engl ; 53(35): 9365-8, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25044814

RESUMEN

Singlet oxygen ((1)O2) plays an important role in oxidative stress in all types of organisms, most of them being able to mount a defense against this oxidant. Recently, zinc finger proteins have been proposed to be involved in its cellular detection but the molecular basis of this process still remains unknown. We have studied the reactivity of a Zn(Cys)4 zinc finger with (1)O2 by combinations of spectroscopic and analytical techniques, focusing on the products formed and the kinetics of the reaction. We report that the cysteines of this zinc finger are oxidized to sulfinates by (1)O2. The reaction of the ZnS4 core with (1)O2 is very fast and efficient with almost no physical quenching of (1)O2. A drastic (ca. five orders of magnitude) decrease of the Zn(2+) binding constant was observed upon oxidation. This suggests that the Zn(Cys)4 zinc finger proteins would release their Zn(2+) ion and unfold upon reaction with (1)O2 under cellular conditions and that zinc finger sites are likely targets for (1)O2.


Asunto(s)
Cisteína/química , Oxígeno Singlete/química , Ácidos Sulfínicos/síntesis química , Dedos de Zinc , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Ácidos Sulfínicos/química
11.
Adv Mater ; 32(19): e1907241, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32236986

RESUMEN

The directed motion of species against a chemical potential gradient is a fundamental feature of living systems, underpinning processes that range from transport through cell membranes to neurotransmission. The development of artificial active cargo transport could enable new modes of chemical purification and pumping. Here, a heat engine is described that drives chemical cargo between liquid phases to generate a concentration gradient. The heat engine, composed of a functionalized FeII 4 L4 coordination cage, is grafted with oligoethylene glycol imidazolium chains. These chains undergo a conformational change upon heating, causing the cage and its cargo to reversibly transfer between aqueous and organic phases. Furthermore, sectional heating and cooling allow for the cage to traverse multiple phase boundaries, allowing for longer-distance transport than would be possible using a single pair of phases.

12.
Nat Chem ; 12(3): 270-275, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32042136

RESUMEN

Porous materials are widely used in industry for applications that include chemical separations and gas scrubbing. These materials are typically porous solids, although the liquid state can be easier to manipulate in industrial settings. The idea of combining the size and shape selectivity of porous domains with the fluidity of liquids is a promising one and porous liquids composed of functionalized organic cages have recently attracted attention. Here we describe an ionic-liquid, porous, tetrahedral coordination cage. Complementing the gas binding observed in other porous liquids, this material also encapsulates non-gaseous guests-shape and size selectivity was observed for a series of isomeric alcohols. Three gaseous chlorofluorocarbon guests, trichlorofluoromethane, dichlorodifluoromethane and chlorotrifluoromethane, were also shown to be taken up by the liquid coordination cage with an affinity that increased with their size. We hope that these findings will lead to the synthesis of other porous liquids whose guest-uptake properties may be tailored to fulfil specific functions.

13.
Chem Commun (Camb) ; 55(66): 9825-9828, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31360956

RESUMEN

Quinoline oligoamide foldamers appended with non-chiral fluorophores and derivatized with a camphanyl chiral inducer display strong chiroptical properties at tunable wavelengths as proved by CD and CPL spectroscopies. Induced CPL activity with high luminescence dissymmetry factors was observed in the visible range at wavelengths specific to the fluorophores.

14.
Nanoscale ; 9(43): 16908-16914, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29077113

RESUMEN

An innovative photopatterning process is described that allows, in a single laser-promoted operation, the covalent attachment of a molecule on a surface (2D patterning - xy dimensions) and its photopolymerization to grow micro-/nanostructures with spatial control in a third z-dimension. The surface patterning process, based on nitrene reactivity, was harnessed using the highly fluorescent azide-substituted boron difluoride dipyrromethene (BODIPY) 1 that was prepared in a single synthetic step from the parent pentafluorophenyl BODIPY on reacting with NaN3. Using the laser of a fluorescence microscope (375 nm or 532 nm) 1 could be grafted on adapted surfaces and then homopolymerised. In this study we show that using glass coverslips coated with PEG/high density alkyne groups (density of ∼1 × 1014 per cm2), the patterning process was much more spatially confined than when using PEG only coating. Varying the irradiation time (1 to 15 s) or laser power (0.14-3.53 µW) allowed variation of the amount of deposited BODIPY to afford, in the extreme case, pillars of a height up to 800 nm. AFM and MS studies revealed that the nano/microstructures were formed of particles of photopolymerized 1 having a mean diameter of ca. 30 nm. The emission spectra and fluorescence lifetimes for the patterned structures were measured, revealing a red-shift (from ∼560 nm up to 620 nm) of the maximum emission and a shortening (from ∼6 ns to 0.8 ns) of the fluorescence lifetimes in areas where the density of BODIPY is high. As an application of the patterning process, a figure formed of 136 dots/pillars was prepared. The confocal hyperspectral fluorescence image revealed that the figure is clearly resolved and constituted by highly photoluminescent red dots whose fluorescence intensities and emission color proved to be highly reproducible. SEM and AFM studies showed that the luminescent dots were pillars with a conical shape, an average height of 710 ± 28 nm and a FWHM of 400 ± 20 nm.

15.
Org Lett ; 19(1): 154-157, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27935723

RESUMEN

A molecular barbiturate messenger, which is reversibly released/captured by a photoswitchable artificial molecular receptor, is shown to act as an effector to control ring gliding on a distant hydrogen-bonding [2]rotaxane. Thus, light-driven chemical communication governing the operation of a remote molecular machine is demonstrated using an information-rich neutral molecule.

16.
Dalton Trans ; 44(18): 8543-51, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25567544

RESUMEN

Molecular tweezers incorporating peripheral platinum salphen complexes and a central chelating terpyridine group have been synthesized. The terpyridine can be switched upon metal binding between a free 'W' shaped form and a coordinated 'U' form. The crystallographic structure of the zinc-closed molecular tweezers was obtained and presented a strong π-stacking between the Pt-salphen units associated with a Pt-Pt bond. The luminescence properties, notably in response to selected guest ions (Zn(2+), Pb(2+), Hg(2+)) and the resulting mechanical motion, have been investigated by UV-Vis and emission spectroscopy. While ion coordination to the terpy resulted in no significant changes in the luminescence, a selective intercalation of a second Hg(2+) associated with a large differential quenching was observed.

17.
Chem Commun (Camb) ; 51(14): 2810-3, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25583634

RESUMEN

A [2]rotaxane, whose thread component comprises a central dibenzylammonium group and 9-alkoxyanthracene stoppers and is hosted by a 24-dibenzo-8-crown bead, undergoes an efficient photocatenation step resulting in a [2]rotaxane-to-[2]catenane topology interconversion via a fully reversible [4π+4π] photocyclomerization of terminal anthracene groups.

18.
Org Lett ; 16(5): 1358-61, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24571171

RESUMEN

Interlocked structures containing the classic Hamilton barbiturate binding motif comprising two 2,6-diamidopyridine units are reported for the first time. Stable [2]-rotaxanes can be accessed either through hydrogen-bonded preorganization by a barbiturate thread followed by a Cu(+)-catalyzed "click" stoppering reaction or by a Cu(2+)-mediated Glaser homocoupling reaction.


Asunto(s)
Barbitúricos/química , Rotaxanos/síntesis química , Amidas/química , Barbitúricos/metabolismo , Cobre/química , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Piridinas/química , Rotaxanos/química
19.
Chem Commun (Camb) ; 48(33): 3981-3, 2012 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-22428161

RESUMEN

Reversible electronic energy transfer and photoinduced electron transfer conspire in the light-driven dethreading of a molecular piston, showing the potential of combining these processes in supramolecular systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA