Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 289(1989): 20221431, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36541169

RESUMEN

Coral reefs are increasingly ecologically destabilized across the globe due to climate change. Behavioural plasticity in corallivore behaviour and short-term trophic ecology in response to bleaching events may influence the extent and severity of coral bleaching and subsequent recovery potential, yet our understanding of these interactions in situ remains unclear. Here, we investigated interactions between corallivory and coral bleaching during a severe high thermal event (10.3-degree heating weeks) in Belize. We found that parrotfish changed their grazing behaviour in response to bleaching by selectively avoiding bleached Orbicella spp. colonies regardless of bleaching severity or coral size. For bleached corals, we hypothesize that this short-term respite from corallivory may temporarily buffer coral energy budgets by not redirecting energetic resources to wound healing, and may therefore enable compensatory nutrient acquisition. However, colonies that had previously been heavily grazed were also more susceptible to bleaching, which is likely to increase mortality risk. Thus, short-term respite from corallivory during bleaching may not be sufficient to functionally rescue corals during prolonged bleaching. Such pairwise interactions and behavioural shifts in response to disturbance may appear small scale and short term, but have the potential to fundamentally alter ecological outcomes, especially in already-degraded ecosystems that are vulnerable and sensitive to change.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Ecosistema , Antozoos/fisiología , Cambio Climático , Belice
2.
Mol Ecol ; 30(20): 5064-5079, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34379848

RESUMEN

Anthropogenic climate change threatens corals globally and both high and low temperatures are known to induce coral bleaching. However, coral stress responses across wide thermal breadths remain understudied. Disentangling the role of symbiosis on the stress response in obligately symbiotic corals is challenging because this response is inherently coupled with nutritional stress. Here, we leverage aposymbiotic colonies of the facultatively symbiotic coral, Astrangia poculata, which lives naturally with and without its algal symbionts, to examine how broad thermal challenges influence coral hosts in the absence of symbiosis. A. poculata were collected from their northern range limit and thermally challenged in two independent 16-day common garden experiments (heat and cold challenge) and behavioural responses to food stimuli and genome-wide gene expression profiling (TagSeq) were performed. Both thermal challenges elicited significant reductions in polyp extension. However, there were five times as many differentially expressed genes (DEGs) under cold challenge compared to heat challenge. Despite an overall stronger response to cold challenge, there was significant overlap in DEGs between thermal challenges. We contrasted these responses to a previously identified module of genes associated with the environmental stress response (ESR) in tropical reef-building corals. Cold challenged corals exhibited a pattern consistent with more severe stressors while the heat challenge response was consistent with lower intensity stressors. Given that these responses were observed in aposymbiotic colonies, many genes previously implicated in ESRs in tropical symbiotic species may represent the coral host's stress response in or out of symbiosis.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Antozoos/genética , Calor , Estrés Fisiológico , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA