Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 476(18): 2657-2676, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31492736

RESUMEN

Autotransporters, or type 5 secretion systems, are widespread surface proteins of Gram-negative bacteria often associated with virulence functions. Autotransporters consist of an outer membrane ß-barrel domain and an exported passenger. In the poorly studied type 5d subclass, the passenger is a patatin-like lipase. The prototype of this secretion pathway is PlpD of Pseudomonas aeruginosa, an opportunistic human pathogen. The PlpD passenger is a homodimer with phospholipase A1 (PLA1) activity. Based on sequencing data, PlpD-like proteins are present in many bacterial species. We characterized the enzymatic activity, specific lipid binding and oligomeric status of PlpD homologs from Aeromonas hydrophila (a fish pathogen), Burkholderia pseudomallei (a human pathogen) and Ralstonia solanacearum (a plant pathogen) and compared these with PlpD. We demonstrate that recombinant type 5d-secreted patatin domains have lipase activity and form dimers or higher-order oligomers. However, dimerization is not necessary for lipase activity; in fact, by making monomeric variants of PlpD, we show that enzymatic activity slightly increases while protein stability decreases. The lipases from the intracellular pathogens A. hydrophila and B. pseudomallei display PLA2 activity in addition to PLA1 activity. Although the type 5d-secreted lipases from the animal pathogens bound to intracellular lipid targets, phosphatidylserine and phosphatidylinositol phosphates, hydrolysis of these lipids could only be observed for FplA of Fusobacterium nucleatum Yet, we noted a correlation between high lipase activity in type 5d autotransporters and intracellular lifestyle. We hypothesize that type 5d phospholipases are intracellularly active and function in modulation of host cell signaling events.


Asunto(s)
Bacterias/metabolismo , Bacterias/patogenicidad , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Lipasa/metabolismo , Factores de Virulencia/metabolismo , Bacterias/genética , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Humanos , Lipasa/genética , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Factores de Virulencia/genética
2.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052154

RESUMEN

The SpyCatcher-SpyTag system was developed seven years ago as a method for protein ligation. It is based on a modified domain from a Streptococcus pyogenes surface protein (SpyCatcher), which recognizes a cognate 13-amino-acid peptide (SpyTag). Upon recognition, the two form a covalent isopeptide bond between the side chains of a lysine in SpyCatcher and an aspartate in SpyTag. This technology has been used, among other applications, to create covalently stabilized multi-protein complexes, for modular vaccine production, and to label proteins (e.g., for microscopy). The SpyTag system is versatile as the tag is a short, unfolded peptide that can be genetically fused to exposed positions in target proteins; similarly, SpyCatcher can be fused to reporter proteins such as GFP, and to epitope or purification tags. Additionally, an orthogonal system called SnoopTag-SnoopCatcher has been developed from an S. pneumoniae pilin that can be combined with SpyCatcher-SpyTag to produce protein fusions with multiple components. Furthermore, tripartite applications have been produced from both systems allowing the fusion of two peptides by a separate, catalytically active protein unit, SpyLigase or SnoopLigase. Here, we review the current state of the SpyCatcher-SpyTag and related technologies, with a particular emphasis on their use in vaccine development and in determining outer membrane protein localization and topology of surface proteins in bacteria.


Asunto(s)
Toxinas Bacterianas/química , Ingeniería de Proteínas/métodos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Nanopartículas/química , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/química , Streptococcus pyogenes/metabolismo
3.
Front Microbiol ; 10: 100, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30846971

RESUMEN

Pseudomonas aeruginosa is one of the main causative agents of nosocomial infections and the spread of multidrug-resistant strains is rising. Therefore, novel strategies for therapy are urgently required. The outer membrane composition of Gram-negative pathogens and especially of Pa restricts the efficacy of antibiotic entry into the cell and determines virulence. For efficient outer membrane protein biogenesis, the ß-barrel assembly machinery (BAM) complex in the outer membrane and periplasmic chaperones like Skp and SurA are crucial. Previous studies indicated that the importance of individual proteins involved in outer membrane protein biogenesis may vary between different Gram-negative species. In addition, since multidrug-resistant Pa strains pose a serious global threat, the interference with both virulence and antibiotic resistance by disturbing outer membrane protein biogenesis might be a new strategy to cope with this challenge. Therefore, deletion mutants of the non-essential BAM complex components bamB and bamC, of the skp homolog hlpA as well as a conditional mutant of surA were investigated. The most profound effects for both traits were associated with reduced levels of SurA, characterized by increased membrane permeability, enhanced sensitivity to antibiotic treatment and attenuation of virulence in a Galleria mellonella infection model. Strikingly, the depletion of SurA in a multidrug-resistant clinical bloodstream isolate re-sensitized the strain to antibiotic treatment. From our data we conclude that SurA of Pa serves as a promising target for developing a drug that shows antiinfective activity and re-sensitizes multidrug-resistant strains to antibiotics.

4.
J Vis Exp ; (139)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30222159

RESUMEN

A first approach to study the function of an unknown gene in bacteria is to create a knock-out of this gene. Here, we describe a robust and fast protocol for transferring gene deletion mutations from one Escherichia coli strain to another by using generalized transduction with the bacteriophage P1. This method requires that the mutation be selectable (e.g., based on gene disruptions using antibiotic cassette insertions). Such antibiotic cassettes can be mobilized from a donor strain and introduced into a recipient strain of interest to quickly and easily generate a gene deletion mutant. The antibiotic cassette can be designed to include flippase recognition sites that allow the excision of the cassette by a site-specific recombinase to produce a clean knock-out with only a ~100-base-pair-long scar sequence in the genome. We demonstrate the protocol by knocking out the tamA gene encoding an assembly factor involved in autotransporter biogenesis and test the effect of this knock-out on the biogenesis and function of two trimeric autotransporter adhesins. Though gene deletion by P1 transduction has its limitations, the ease and speed of its implementation make it an attractive alternative to other methods of gene deletion.


Asunto(s)
Farmacorresistencia Microbiana/genética , Escherichia coli/genética , Eliminación de Gen
5.
AIMS Microbiol ; 4(1): 140-164, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31294207

RESUMEN

Many bacteria, both environmental and pathogenic, exhibit the property of autoaggregation. In autoaggregation (sometimes also called autoagglutination or flocculation), bacteria of the same type form multicellular clumps that eventually settle at the bottom of culture tubes. Autoaggregation is generally mediated by self-recognising surface structures, such as proteins and exopolysaccharides, which we term collectively as autoagglutinins. Although a widespread phenomenon, in most cases the function of autoaggregation is poorly understood, though there is evidence to show that aggregating bacteria are protected from environmental stresses or host responses. Autoaggregation is also often among the first steps in forming biofilms. Here, we review the current knowledge on autoaggregation, the role of autoaggregation in biofilm formation and pathogenesis, and molecular mechanisms leading to aggregation using specific examples.

6.
Nat Commun ; 9(1): 3467, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150748

RESUMEN

Many bacteria export effector proteins fulfilling their function in membranes of a eukaryotic host. These effector membrane proteins appear to contain signals for two incompatible bacterial secretion pathways in the same protein: a specific export signal, as well as transmembrane segments that one would expect to mediate targeting to the bacterial inner membrane. Here, we show that the transmembrane segments of effector proteins of type III and type IV secretion systems indeed integrate in the membrane as required in the eukaryotic host, but that their hydrophobicity in most instances is just below the threshold required for mediating targeting to the bacterial inner membrane. Furthermore, we show that binding of type III secretion chaperones to both the effector's chaperone-binding domain and adjacent hydrophobic transmembrane segments also prevents erroneous targeting. These results highlight the evolution of a fine discrimination between targeting pathways that is critical for the virulence of many bacterial pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Proteínas de la Membrana/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA