Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36326078

RESUMEN

Most polygenic risk score (PRS)models have been based on data from populations of European origins (accounting for the majority of the large genomics datasets, e.g. >78% in the UK Biobank and >85% in the GTEx project). Although several large-scale Asian biobanks were initiated (e.g. Japanese, Korean, Han Chinese biobanks), most other Asian countries have little or near-zero genomics data. To implement PRS models for under-represented populations, we explored transfer learning approaches, assuming that information from existing large datasets can compensate for the small sample size that can be feasibly obtained in developing countries, like Vietnam. Here, we benchmark 13 common PRS methods in meta-population strategy (combining individual genotype data from multiple populations) and multi-population strategy (combining summary statistics from multiple populations). Our results highlight the complementarity of different populations and the choice of methods should depend on the target population. Based on these results, we discussed a set of guidelines to help users select the best method for their datasets. We developed a robust and comprehensive software to allow for benchmarking comparisons between methods and proposed a computational framework for improving PRS performance in a dataset with a small sample size. This work is expected to inform the development of genomics applications in under-represented populations. PRSUP framework is available at: https://github.com/BiomedicalMachineLearning/VGP.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Vietnam , Genómica/métodos , Factores de Riesgo
2.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34020545

RESUMEN

MOTIVATION: Predicting cell locations is important since with the understanding of cell locations, we may estimate the function of cells and their integration with the spatial environment. Thus, the DREAM challenge on single-cell transcriptomics required participants to predict the locations of single cells in the Drosophila embryo using single-cell transcriptomic data. RESULTS: We have developed over 50 pipelines by combining different ways of preprocessing the RNA-seq data, selecting the genes, predicting the cell locations and validating predicted cell locations, resulting in the winning methods which were ranked second in sub-challenge 1, first in sub-challenge 2 and third in sub-challenge 3. In this paper, we present an R package, SCTCwhatateam, which includes all the methods we developed and the Shiny web application to facilitate the research on single-cell spatial reconstruction. All the data and the example use cases are available in the Supplementary data.


Asunto(s)
Análisis de la Célula Individual/métodos , Transcriptoma , Algoritmos , Animales , Biología Computacional/métodos , Drosophila/embriología , Análisis de Secuencia de ARN/métodos
3.
BMC Bioinformatics ; 22(1): 300, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34082714

RESUMEN

BACKGROUND: Accurate prognosis and identification of cancer subtypes at molecular level are important steps towards effective and personalised treatments of breast cancer. To this end, many computational methods have been developed to use gene (mRNA) expression data for breast cancer subtyping and prognosis. Meanwhile, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been extensively studied in the last 2 decades and their associations with breast cancer subtypes and prognosis have been evidenced. However, it is not clear whether using miRNA and/or lncRNA expression data helps improve the performance of gene expression based subtyping and prognosis methods, and this raises challenges as to how and when to use these data and methods in practice. RESULTS: In this paper, we conduct a comparative study of 35 methods, including 12 breast cancer subtyping methods and 23 breast cancer prognosis methods, on a collection of 19 independent breast cancer datasets. We aim to uncover the roles of miRNAs and lncRNAs in breast cancer subtyping and prognosis from the systematic comparison. In addition, we created an R package, CancerSubtypesPrognosis, including all the 35 methods to facilitate the reproducibility of the methods and streamline the evaluation. CONCLUSIONS: The experimental results show that integrating miRNA expression data helps improve the performance of the mRNA-based cancer subtyping methods. However, miRNA signatures are not as good as mRNA signatures for breast cancer prognosis. In general, lncRNA expression data does not help improve the mRNA-based methods in both cancer subtyping and cancer prognosis. These results suggest that the prognostic roles of miRNA/lncRNA signatures in the improvement of breast cancer prognosis needs to be further verified.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Reproducibilidad de los Resultados
4.
BMC Bioinformatics ; 21(1): 32, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996128

RESUMEN

After publication of this supplement article [1], it was brought to our attention that the Fig. 3 was incorrect. The correct Fig. 3 is as below.

5.
BMC Bioinformatics ; 20(1): 143, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30876399

RESUMEN

BACKGROUND: microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and they play an important role in various biological processes in the human body. Therefore, identifying their regulation mechanisms is essential for the diagnostics and therapeutics for a wide range of diseases. There have been a large number of researches which use gene expression profiles to resolve this problem. However, the current methods have their own limitations. Some of them only identify the correlation of miRNA and mRNA expression levels instead of the causal or regulatory relationships while others infer the causality but with a high computational complexity. To overcome these issues, in this study, we propose a method to identify miRNA-mRNA regulatory relationships in breast cancer using the invariant causal prediction. The key idea of invariant causal prediction is that the cause miRNAs of their target mRNAs are the ones which have persistent causal relationships with the target mRNAs across different environments. RESULTS: In this research, we aim to find miRNA targets which are consistent across different breast cancer subtypes. Thus, first of all, we apply the Pam50 method to categorize BRCA samples into different "environment" groups based on different cancer subtypes. Then we use the invariant causal prediction method to find miRNA-mRNA regulatory relationships across subtypes. We validate the results with the miRNA-transfected experimental data and the results show that our method outperforms the state-of-the-art methods. In addition, we also integrate this new method with the Pearson correlation analysis method and Lasso in an ensemble method to take the advantages of these methods. We then validate the results of the ensemble method with the experimentally confirmed data and the ensemble method shows the best performance, even comparing to the proposed causal method. CONCLUSIONS: This research found miRNA targets which are consistent across different breast cancer subtypes. Further functional enrichment analysis shows that miRNAs involved in the regulatory relationships predicated by the proposed methods tend to synergistically regulate target genes, indicating the usefulness of these methods, and the identified miRNA targets could be used in the design of wet-lab experiments to discover the causes of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Biología Computacional/métodos , Redes Reguladoras de Genes , MicroARNs/genética , ARN Mensajero/genética , Neoplasias de la Mama/clasificación , Bases de Datos Genéticas , Femenino , Humanos , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados
6.
BMC Bioinformatics ; 20(Suppl 23): 613, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31881825

RESUMEN

BACKGROUND: Studying multiple microRNAs (miRNAs) synergism in gene regulation could help to understand the regulatory mechanisms of complicated human diseases caused by miRNAs. Several existing methods have been presented to infer miRNA synergism. Most of the current methods assume that miRNAs with shared targets at the sequence level are working synergistically. However, it is unclear if miRNAs with shared targets are working in concert to regulate the targets or they individually regulate the targets at different time points or different biological processes. A standard method to test the synergistic activities is to knock-down multiple miRNAs at the same time and measure the changes in the target genes. However, this approach may not be practical as we would have too many sets of miRNAs to test. RESULTS: n this paper, we present a novel framework called miRsyn for inferring miRNA synergism by using a causal inference method that mimics the multiple-intervention experiments, e.g. knocking-down multiple miRNAs, with observational data. Our results show that several miRNA-miRNA pairs that have shared targets at the sequence level are not working synergistically at the expression level. Moreover, the identified miRNA synergistic network is small-world and biologically meaningful, and a number of miRNA synergistic modules are significantly enriched in breast cancer. Our further analyses also reveal that most of synergistic miRNA-miRNA pairs show the same expression patterns. The comparison results indicate that the proposed multiple-intervention causal inference method performs better than the single-intervention causal inference method in identifying miRNA synergistic network. CONCLUSIONS: Taken together, the results imply that miRsyn is a promising framework for identifying miRNA synergism, and it could enhance the understanding of miRNA synergism in breast cancer.


Asunto(s)
Algoritmos , MicroARNs/genética , Neoplasias de la Mama/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Radiologe ; 59(10): 912-919, 2019 Oct.
Artículo en Alemán | MEDLINE | ID: mdl-31214744

RESUMEN

PURPOSE: The opposing field stability of highly coercive dental magnets in external magnetic fields of 1.5 and 3 T magnetic resonance imaging (MRI) was investigated. It was further assessed if remagnetizing can reverse the flux density in the magnets. MATERIAL AND METHODS: Using an adjustable fixture, 20 SmCo magnets were exposed and 6 positions of prosthodontics and epithetics were simulated: P : in the lower jaw parallel to the main field B0, A: in the upper jaw antiparallel to B0 in a straight position, Ad: antiparallel, reclined by 45°, Av: antiparallel, inclined by 45°, G: glabellar region 90° to B0 and M: mastoid region 90° to B0. The effects of exposure in the exterior field directly at the opening for the parallel (Pex), antiparallel (Aex), glabellar (Gex) and mastoid (Mex) positions were also investigated. After each exposure the magnets were remagnetized. The flux density was determined as an equivalent of the adhesive force. RESULTS: With 1.5 T clinically relevant loss of flux density between 7% and 10% occurred only in the angled positions Ad and Av and the external position Aex. In the antiparallel positions A and Aex the strong external field of 3 T caused very high losses of 72% and 33%, respectively. In the inclined and reclined antiparallel positions Ad and Av the magnets lost 96% of their flux density and were almost fully demagnetized. All of the magnets could be fully remagnetized regardless of the degree of damage. CONCLUSION: Highly coercive SmCo magnets can remain in situ during a 1.5 T MRI scan unless the resulting artifacts are diagnostically relevant. Exposure to the 3 T main field in antiparallel position may result in a complete loss of the adhesive force. In this case the magnets should be remagnetized by the manufacturer. Inclination or reclination of the head reinforces the effect of the main field.


Asunto(s)
Imagen por Resonancia Magnética , Imanes , Prostodoncia , Artefactos , Campos Magnéticos
8.
Med ; 5(5): 459-468.e3, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38642556

RESUMEN

BACKGROUND: The extent to which the relationships between clinical risk factors and coronary artery disease (CAD) are altered by CAD polygenic risk score (PRS) is not well understood. Here, we determine whether the interactions between clinical risk factors and CAD PRS further explain risk for incident CAD. METHODS: Participants were of European ancestry from the UK Biobank without prevalent CAD. An externally trained genome-wide CAD PRS was generated and then applied. Clinical risk factors were ascertained at baseline. Cox proportional hazards models were fitted to examine the incident CAD effects of CAD PRS, risk factors, and their interactions. Next, the PRS and risk factors were stratified to investigate the attributable risk of clinical risk factors. FINDINGS: A total of 357,144 individuals of European ancestry without prevalent CAD were included. During a median of 11.1 years of follow-up (interquartile range 10.4-14.1 years), CAD PRS was associated with 1.35-fold (95% confidence interval [CI] 1.332-1.368) risk per SD for incident CAD. The prognostic relevance of the following risk factors was relatively diminished for those with high CAD PRS on a continuous scale: type 2 diabetes (hazard ratio [HR]interaction 0.91, 95% CIinteraction 0.88-0.94), increased body mass index (HRinteraction 0.97, 95% CIinteraction 0.96-0.98), and increased C-reactive protein (HRinteraction 0.98, 95% CIinteraction 0.96-0.99). However, a high CAD PRS yielded joint risk increases with low-density lipoprotein cholesterol (HRinteraction 1.05, 95% CIinteraction 1.04-1.06) and total cholesterol (HRinteraction 1.05, 95% CIinteraction 1.03-1.06). CONCLUSION: The CAD PRS is associated with incident CAD, and its application improves the prognostic relevance of several clinical risk factors. FUNDING: P.N. (R01HL127564, R01HL151152, and U01HG011719) is supported by the National Institutes of Health.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Factores de Riesgo , Reino Unido/epidemiología , Modelos de Riesgos Proporcionales , Anciano , Herencia Multifactorial/genética , Estudio de Asociación del Genoma Completo , Adulto , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Población Blanca/genética , Incidencia , Medición de Riesgo , Factores de Riesgo de Enfermedad Cardiaca , Puntuación de Riesgo Genético
9.
Nat Commun ; 15(1): 563, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233398

RESUMEN

Prioritizing disease-critical cell types by integrating genome-wide association studies (GWAS) with functional data is a fundamental goal. Single-cell chromatin accessibility (scATAC-seq) and gene expression (scRNA-seq) have characterized cell types at high resolution, and studies integrating GWAS with scRNA-seq have shown promise, but studies integrating GWAS with scATAC-seq have been limited. Here, we identify disease-critical fetal and adult brain cell types by integrating GWAS summary statistics from 28 brain-related diseases/traits (average N = 298 K) with 3.2 million scATAC-seq and scRNA-seq profiles from 83 cell types. We identified disease-critical fetal (respectively adult) brain cell types for 22 (respectively 23) of 28 traits using scATAC-seq, and for 8 (respectively 17) of 28 traits using scRNA-seq. Significant scATAC-seq enrichments included fetal photoreceptor cells for major depressive disorder, fetal ganglion cells for BMI, fetal astrocytes for ADHD, and adult VGLUT2 excitatory neurons for schizophrenia. Our findings improve our understanding of brain-related diseases/traits and inform future analyses.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Trastorno Depresivo Mayor , Humanos , RNA-Seq , Estudio de Asociación del Genoma Completo , Cromatina/genética , Encéfalo , Análisis de la Célula Individual
10.
Circ Genom Precis Med ; : e004755, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119725

RESUMEN

BACKGROUND: Preeclampsia is a leading cause of maternal and perinatal morbidity and mortality. However, the current understanding of its underlying biological pathways remains limited. METHODS: In this study, we performed a cross-platform proteome- and transcriptome-wide genetic analysis aimed at evaluating the causal relevance of >2000 circulating proteins with preeclampsia, supported by data on the expression of over 15 000 genes across 36 tissues leveraging large-scale preeclampsia genetic association data from women of European ancestry. RESULTS: We demonstrate genetic associations of 18 circulating proteins with preeclampsia (SULT1A1, SH2B3, SERPINE2, RGS18, PZP, NOTUM, METAP1, MANEA, jun-D, GDF15 [growth/differentiation factor 15], FGL1, FGF5, FES, APOBR, ANP, ALDH-E2, ADAMTS13, and 3MG), among which 11 were either directly or indirectly supported by gene expression data, 9 were supported by Bayesian colocalization analyses, and 5 (SERPINE2, PZP, FGF5, FES, and ANP) were supported by all lines of evidence examined. Protein interaction mapping identified potential shared biological pathways through natriuretic peptide signaling, blood pressure regulation, immune tolerance, and thrombin activity regulation. CONCLUSIONS: This investigation identified multiple targetable proteins linked to cardiovascular, inflammatory, and coagulation pathways, with SERPINE2, PZP, FGF5, FES, and ANP identified as pivotal proteins with likely causal roles in the development of preeclampsia. The identification of these potential targets may guide the development of targeted therapies for preeclampsia.

11.
medRxiv ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39185532

RESUMEN

Background: Despite advances in managing traditional risk factors, coronary artery disease (CAD) remains the leading cause of mortality. Circulating hematopoietic cells influence risk for CAD, but the role of a key regulating organ, spleen, is unknown. The understudied spleen is a 3-dimensional structure of the hematopoietic system optimally suited for unbiased radiologic investigations toward novel mechanistic insights. Methods: Deep learning-based image segmentation and radiomics techniques were utilized to extract splenic radiomic features from abdominal MRIs of 42,059 UK Biobank participants. Regression analysis was used to identify splenic radiomics features associated with CAD. Genome-wide association analyses were applied to identify loci associated with these radiomics features. Overlap between loci associated with CAD and the splenic radiomics features was explored to understand the underlying genetic mechanisms of the role of the spleen in CAD. Results: We extracted 107 splenic radiomics features from abdominal MRIs, and of these, 10 features were associated with CAD. Genome-wide association analysis of CAD-associated features identified 219 loci, including 35 previously reported CAD loci, 7 of which were not associated with conventional CAD risk factors. Notably, variants at 9p21 were associated with splenic features such as run length non-uniformity. Conclusions: Our study, combining deep learning with genomics, presents a new framework to uncover the splenic axis of CAD. Notably, our study provides evidence for the underlying genetic connection between the spleen as a candidate causal tissue-type and CAD with insight into the mechanisms of 9p21, whose mechanism is still elusive despite its initial discovery in 2007. More broadly, our study provides a unique application of deep learning radiomics to non-invasively find associations between imaging, genetics, and clinical outcomes.

12.
Cell Genom ; 4(4): 100523, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38508198

RESUMEN

Polygenic risk scores (PRSs) are an emerging tool to predict the clinical phenotypes and outcomes of individuals. We propose PRSmix, a framework that leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human genetic architecture for 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 1.20-fold (95% confidence interval [CI], [1.10; 1.3]; p = 9.17 × 10-5) and 1.19-fold (95% CI, [1.11; 1.27]; p = 1.92 × 10-6), and PRSmix+ improved the prediction accuracy by 1.72-fold (95% CI, [1.40; 2.04]; p = 7.58 × 10-6) and 1.42-fold (95% CI, [1.25; 1.59]; p = 8.01 × 10-7) in European and South Asian ancestries, respectively. Compared to the previously cross-trait-combination methods with scores from pre-defined correlated traits, we demonstrated that our method improved prediction accuracy for coronary artery disease up to 3.27-fold (95% CI, [2.1; 4.44]; p value after false discovery rate (FDR) correction = 2.6 × 10-4). Our method provides a comprehensive framework to benchmark and leverage the combined power of PRS for maximal performance in a desired target population.


Asunto(s)
Enfermedad de la Arteria Coronaria , Osteopatía , Humanos , Herencia Multifactorial/genética , Puntuación de Riesgo Genético , Benchmarking , Enfermedad de la Arteria Coronaria/diagnóstico
13.
J Am Heart Assoc ; 13(7): e033413, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38533953

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a leading cause of death among the 38.4 million people with HIV globally. The extent to which cardiovascular polygenic risk scores (PRSs) derived in non-HIV populations generalize to people with HIV is not well understood. METHODS AND RESULTS: PRSs for CAD (GPSMult) and lipid traits were calculated in a global cohort of people with HIV treated with antiretroviral therapy with low-to-moderate atherosclerotic cardiovascular disease risk enrolled in REPRIEVE (Randomized Trial to Prevent Vascular Events in HIV). The PRSs were associated with baseline lipid traits in 4495 genotyped participants, and with subclinical CAD in a subset of 662 who underwent coronary computed tomography angiography. Among participants who underwent coronary computed tomography angiography (mean age, 50.9 [SD, 5.8] years; 16.1% women; 41.8% African, 57.3% European, 1.1% Asian), GPSMult was associated with plaque presence with odds ratio (OR) per SD in GPSMult of 1.42 (95% CI, 1.20-1.68; P=3.8×10-5), stenosis >50% (OR, 2.39 [95% CI, 1.48-3.85]; P=3.4×10-4), and noncalcified/vulnerable plaque (OR, 1.45 [95% CI, 1.23-1.72]; P=9.6×10-6). Effects were consistent in subgroups of age, sex, 10-year atherosclerotic cardiovascular disease risk, ancestry, and CD4 count. Adding GPSMult to established risk factors increased the C-statistic for predicting plaque presence from 0.718 to 0.734 (P=0.02). Furthermore, a PRS for low-density lipoprotein cholesterol was associated with plaque presence with OR of 1.21 (95% CI, 1.01-1.44; P=0.04), and partially calcified plaque with OR of 1.21 (95% CI, 1.01-1.45; P=0.04) per SD. CONCLUSIONS: Among people with HIV treated with antiretroviral therapy without documented atherosclerotic cardiovascular disease and at low-to-moderate calculated risk in REPRIEVE, an externally developed CAD PRS was predictive of subclinical atherosclerosis. PRS for low-density lipoprotein cholesterol was also associated with subclinical atherosclerosis, supporting a role for low-density lipoprotein cholesterol in HIV-associated CAD. REGISTRATION: URL: https://www.reprievetrial.org; Unique identifier: NCT02344290.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Infecciones por VIH , Placa Aterosclerótica , Humanos , Femenino , Persona de Mediana Edad , Masculino , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/complicaciones , Enfermedad de la Arteria Coronaria/complicaciones , Placa Aterosclerótica/complicaciones , Aterosclerosis/complicaciones , Factores de Riesgo , Infecciones por VIH/complicaciones , Infecciones por VIH/diagnóstico , Infecciones por VIH/tratamiento farmacológico , Angiografía por Tomografía Computarizada/métodos , LDL-Colesterol , Angiografía Coronaria
14.
JAMA Cardiol ; 9(4): 357-366, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38416462

RESUMEN

Importance: Polygenic risk scores (PRSs) have proven to be as strong as or stronger than established clinical risk factors for many cardiovascular phenotypes. Whether this is true for aortic stenosis remains unknown. Objective: To develop a novel aortic stenosis PRS and compare its aortic stenosis risk estimation to established clinical risk factors. Design, Setting, and Participants: This was a longitudinal cohort study using data from the Million Veteran Program (MVP; 2011-2020), UK Biobank (2006-2010), and 6 Thrombolysis in Myocardial Infarction (TIMI) trials, including DECLARE-TIMI 58 (2013-2018), FOURIER (TIMI 59; 2013-2017), PEGASUS-TIMI 54 (2010-2014), SAVOR-TIMI 53 (2010-2013), SOLID-TIMI 52 (2009-2014), and ENGAGE AF-TIMI 48 (2008-2013), which were a mix of population-based and randomized clinical trials. Individuals from UK Biobank and the MVP meeting a previously validated case/control definition for aortic stenosis were included. All individuals from TIMI trials were included unless they had a documented preexisting aortic valve replacement. Analysis took place from January 2022 to December 2023. Exposures: PRS for aortic stenosis (developed using data from MVP and validated in UK Biobank) and other previously validated cardiovascular PRSs, defined either as a continuous variable or as low (bottom 20%), intermediate, and high (top 20%), and clinical risk factors. Main Outcomes: Aortic stenosis (defined using International Classification of Diseases or Current Procedural Terminology codes in UK Biobank and MVP or safety event data in the TIMI trials). Results: The median (IQR) age in MVP was 67 (57-73) years, and 135 140 of 147 104 participants (92%) were male. The median (IQR) age in the TIMI trials was 66 (54-78) years, and 45 524 of 59 866 participants (71%) were male. The best aortic stenosis PRS incorporated 5 170 041 single-nucleotide variants and was associated with aortic stenosis in both the MVP testing sample (odds ratio, 1.41; 95% CI, 1.37-1.45 per 1 SD PRS; P = 4.6 × 10-116) and TIMI trials (hazard ratio, 1.44; 95% CI, 1.27-1.62 per 1 SD PRS; P = 3.2 × 10-9). Among genetic and clinical risk factors, the aortic stenosis PRS performed comparably to most risk factors besides age, and within a given age range, the combination of clinical and genetic risk factors was additive, providing a 3- to 4-fold increased gradient of risk of aortic stenosis. However, the addition of the aortic stenosis PRS to a model including clinical risk factors only improved risk discrimination of aortic stenosis by 0.01 to 0.02 (C index in MVP: 0.78 with clinical risk factors, 0.79 with risk factors and aortic stenosis PRS; C index in TIMI: 0.71 with clinical risk factors, 0.73 with risk factors and aortic stenosis PRS). Conclusions: This study developed and validated 1 of the first aortic stenosis PRSs. While aortic stenosis genetic risk was independent from clinical risk factors and performed comparably to all other risk factors besides age, genetic risk resulted in only a small improvement in overall aortic stenosis risk discrimination beyond age and clinical risk factors. This work sets the stage for further development of an aortic stenosis PRS.


Asunto(s)
Estenosis de la Válvula Aórtica , Infarto del Miocardio , Humanos , Masculino , Anciano , Femenino , Puntuación de Riesgo Genético , Estudios Longitudinales , Predisposición Genética a la Enfermedad , Factores de Riesgo , Estenosis de la Válvula Aórtica/genética
15.
JAMA Cardiol ; 9(3): 209-220, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170504

RESUMEN

Importance: Hypertensive disorders of pregnancy (HDPs), including gestational hypertension and preeclampsia, are important contributors to maternal morbidity and mortality worldwide. In addition, women with HDPs face an elevated long-term risk of cardiovascular disease. Objective: To identify proteins in the circulation associated with HDPs. Design, Setting, and Participants: Two-sample mendelian randomization (MR) tested the associations of genetic instruments for cardiovascular disease-related proteins with gestational hypertension and preeclampsia. In downstream analyses, a systematic review of observational data was conducted to evaluate the identified proteins' dynamics across gestation in hypertensive vs normotensive pregnancies, and phenome-wide MR analyses were performed to identify potential non-HDP-related effects associated with the prioritized proteins. Genetic association data for cardiovascular disease-related proteins were obtained from the Systematic and Combined Analysis of Olink Proteins (SCALLOP) consortium. Genetic association data for the HDPs were obtained from recent European-ancestry genome-wide association study meta-analyses for gestational hypertension and preeclampsia. Study data were analyzed October 2022 to October 2023. Exposures: Genetic instruments for 90 candidate proteins implicated in cardiovascular diseases, constructed using cis-protein quantitative trait loci (cis-pQTLs). Main Outcomes and Measures: Gestational hypertension and preeclampsia. Results: Genetic association data for cardiovascular disease-related proteins were obtained from 21 758 participants from the SCALLOP consortium. Genetic association data for the HDPs were obtained from 393 238 female individuals (8636 cases and 384 602 controls) for gestational hypertension and 606 903 female individuals (16 032 cases and 590 871 controls) for preeclampsia. Seventy-five of 90 proteins (83.3%) had at least 1 valid cis-pQTL. Of those, 10 proteins (13.3%) were significantly associated with HDPs. Four were robust to sensitivity analyses for gestational hypertension (cluster of differentiation 40, eosinophil cationic protein [ECP], galectin 3, N-terminal pro-brain natriuretic peptide [NT-proBNP]), and 2 were robust for preeclampsia (cystatin B, heat shock protein 27 [HSP27]). Consistent with the MR findings, observational data revealed that lower NT-proBNP (0.76- to 0.88-fold difference vs no HDPs) and higher HSP27 (2.40-fold difference vs no HDPs) levels during the first trimester of pregnancy were associated with increased risk of HDPs, as were higher levels of ECP (1.60-fold difference vs no HDPs). Phenome-wide MR analyses identified 37 unique non-HDP-related protein-disease associations, suggesting potential on-target effects associated with interventions lowering HDP risk through the identified proteins. Conclusions and Relevance: Study findings suggest genetic associations of 4 cardiovascular disease-related proteins with gestational hypertension and 2 associated with preeclampsia. Future studies are required to test the efficacy of targeting the corresponding pathways to reduce HDP risk.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión Inducida en el Embarazo , Preeclampsia , Embarazo , Femenino , Humanos , Preeclampsia/fisiopatología , Enfermedades Cardiovasculares/complicaciones , Estudio de Asociación del Genoma Completo , Medicina de Precisión/efectos adversos , Proteínas de Choque Térmico HSP27
16.
Nat Commun ; 14(1): 722, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759513

RESUMEN

Cross-ancestry genetic correlation is an important parameter to understand the genetic relationship between two ancestry groups. However, existing methods cannot properly account for ancestry-specific genetic architecture, which is diverse across ancestries, producing biased estimates of cross-ancestry genetic correlation. Here, we present a method to construct a genomic relationship matrix (GRM) that can correctly account for the relationship between ancestry-specific allele frequencies and ancestry-specific allelic effects. Through comprehensive simulations, we show that the proposed method outperforms existing methods in the estimations of SNP-based heritability and cross-ancestry genetic correlation. The proposed method is further applied to anthropometric and other complex traits from the UK Biobank data across ancestry groups. For obesity, the estimated genetic correlation between African and European ancestry cohorts is significantly different from unity, suggesting that obesity is genetically heterogenous between these two ancestries.


Asunto(s)
Antropometría , Genética de Población , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Población Negra/genética , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Reino Unido
17.
JAMA Cardiol ; 8(9): 859-864, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37585212

RESUMEN

Importance: To address systemic disparities in biomedical research, the All of Us (AoU) Research Program was created to identify the root causes and consequences of health outcomes in the US. However, the extent of AoU's racial and ethnic diversity is unknown. Objective: To quantify representation of key racial and ethnic groups in the accruing AoU nationwide health cohort and compare with their actual representation in the US. Design, Setting, and Participants: This cohort study compared the AoU program from May 2017 to June 2022 for individuals 18 years and older with the Decennial Survey 2020 (DEC) collected by the US Census Bureau. Exposures: Representation of non-Hispanic Asian, non-Hispanic Black or African American, Hispanic or Latino, non-Hispanic White, and uncategorized or multiple races in AoU. Main Outcomes and Measures: The extent of underrepresentation or overrepresentation of each racial group in the AoU program at both nationwide and state-level relative to DEC. Results: Of the 358 705 US adults in the AoU to date, individuals identified with the following race and ethnicity categories: 12 710 non-Hispanic Asian (3.5%), 73 348 non-Hispanic Black or African American (20.5%), 58 488 Hispanic or Latino (16.3%), 205 457 non-Hispanic White (57.3%), and 8702 uncategorized or reporting multiple categories (2.4%). Of 355 413 participants with available sex at birth and age data, 218 981 (61.6%) were female and had a mean (SD) age of 53.1 (17.0) years, 136 037 (38.28%) were male and had a mean (SD) age of 56.7 (17.0) years, and 395 reported nonbinary sex (0.1%), with a mean (SD) age of 55.4 (15.8) years. Compared with the referent US, non-Hispanic Black or African American individuals were overrepresented in the AoU by 8.73% (AoU, 20.5% [73 348 of 358 705] vs DEC, 11.7% [30 266 080 of 258 343 281]) and by relative scale, 1.94-fold. Non-Hispanic White individuals accounted for the greatest participation in the AoU with generally consistent dominance across all regions yet numerically underrepresented by absolute difference of -3.54% (95% CI, -3.70 to -3.38). Uncategorized or multiracial group in the AoU (2.4% [8702 of 358 705]) was 0.43-fold likely to be represented relative to the DEC (4.6% [11 922 096 of 258 343 281]) with an absolute difference of -2.19% (95% CI, -2.24 to -2.14). Moreover, non-Hispanic Asian individuals were underrepresented by -2.54% (95% CI, -2.60 to -2.48) prominently in most states. Individuals identifying as Hispanic or Latino were nominally underrepresented by -0.46% (95% CI, -0.58 to -0.34) (AoU, 16.3% [58 488 of 358 705] vs DEC, 16.8% [43 322 792 of 258 343 281]). Conclusions and Relevance: Recruitment trends for the ongoing AoU show relatively improved representation of some major race groups with geographic trends. These findings underscore the need to further tailor and augment recruitment and participation initiatives for diverse populations.


Asunto(s)
Etnicidad , Salud Poblacional , Grupos Raciales , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Cohortes , Hispánicos o Latinos , Estados Unidos , Asiático , Negro o Afroamericano , Blanco
18.
Front Genet ; 14: 1104906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359380

RESUMEN

The H-matrix best linear unbiased prediction (HBLUP) method has been widely used in livestock breeding programs. It can integrate all information, including pedigree, genotypes, and phenotypes on both genotyped and non-genotyped individuals into one single evaluation that can provide reliable predictions of breeding values. The existing HBLUP method requires hyper-parameters that should be adequately optimised as otherwise the genomic prediction accuracy may decrease. In this study, we assess the performance of HBLUP using various hyper-parameters such as blending, tuning, and scale factor in simulated and real data on Hanwoo cattle. In both simulated and cattle data, we show that blending is not necessary, indicating that the prediction accuracy decreases when using a blending hyper-parameter <1. The tuning process (adjusting genomic relationships accounting for base allele frequencies) improves prediction accuracy in the simulated data, confirming previous studies, although the improvement is not statistically significant in the Hanwoo cattle data. We also demonstrate that a scale factor, α, which determines the relationship between allele frequency and per-allele effect size, can improve the HBLUP accuracy in both simulated and real data. Our findings suggest that an optimal scale factor should be considered to increase prediction accuracy, in addition to blending and tuning processes, when using HBLUP.

19.
medRxiv ; 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37961553

RESUMEN

Importance: Earlier identification of high coronary artery disease (CAD) risk individuals may enable more effective prevention strategies. However, existing 10-year risk frameworks are ineffective at earlier identification. Understanding the variable importance of genomic and clinical factors across life stages may significantly improve lifelong CAD event prediction. Objective: To assess the time-varying significance of genomic and clinical risk factors in CAD risk estimation across various age groups. Design Setting and Participants: A longitudinal study was performed using data from two cohort studies: the Framingham Offspring Study (FOS) with 3,588 participants aged 19-57 years and the UK Biobank (UKB) with 327,837 participants aged 40-70 years. A total of 134,765 and 3,831,734 person-time years were observed in FOS and UKB, respectively. Main Outcomes and Measures: Hazard ratios (HR) for CAD were calculated for polygenic risk scores (PRS) and clinical risk factors at each age of enrollment. The relative importance of PRS and Pooled Cohort Equations (PCE) in predicting CAD events was also evaluated by age groups. Results: The importance of CAD PRS diminished over the life course, with an HR of 3.58 (95% CI 1.39-9.19) at age 19 in FOS and an HR of 1.51 (95% CI 1.48-1.54) by age 70 in UKB. Clinical risk factors exhibited similar age-dependent trends. PRS significantly outperformed PCE in identifying subsequent CAD events in the 40-45-year age group, with 3.2-fold more appropriately identified events. The mean age of CAD events occurred 1.8 years earlier for those at high genomic risk but 9.6 years later for those at high clinical risk (p<0.001). Overall, adding PRS improved the area under the receiving operating curve of the PCE by an average of +5.1% (95% CI 4.9-5.2%) across all age groups; among individuals <55 years, PRS augmented the AUC-ROC of the PCE by 6.5% (95% CI 5.5-7.5%, p<0.001). Conclusions and Relevance: Genomic and clinical risk factors for CAD display time-varying importance across the lifespan. The study underscores the added value of CAD PRS, particularly among individuals younger than 55 years, for enhancing early risk prediction and prevention strategies.

20.
medRxiv ; 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865265

RESUMEN

Polygenic risk scores (PRS) are an emerging tool to predict the clinical phenotypes and outcomes of individuals. Validation and transferability of existing PRS across independent datasets and diverse ancestries are limited, which hinders the practical utility and exacerbates health disparities. We propose PRSmix, a framework that evaluates and leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human genetic architecture. We applied PRSmix to 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 1.20-fold (95% CI: [1.10; 1.3]; P-value = 9.17 × 10-5) and 1.19-fold (95% CI: [1.11; 1.27]; P-value = 1.92 × 10-6), and PRSmix+ improved the prediction accuracy by 1.72-fold (95% CI: [1.40; 2.04]; P-value = 7.58 × 10-6) and 1.42-fold (95% CI: [1.25; 1.59]; P-value = 8.01 × 10-7) in European and South Asian ancestries, respectively. Compared to the previously established cross-trait-combination method with scores from pre-defined correlated traits, we demonstrated that our method can improve prediction accuracy for coronary artery disease up to 3.27-fold (95% CI: [2.1; 4.44]; P-value after FDR correction = 2.6 × 10-4). Our method provides a comprehensive framework to benchmark and leverage the combined power of PRS for maximal performance in a desired target population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA