Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Food Sci Technol ; 61(7): 1283-1294, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38910925

RESUMEN

In the current study, ten lactic acid bacteria (LAB) isolates exhibiting anti-α-glucosidase activity were isolated from fermented food. It is directed at novel supplementary diets to prevent/improve diet-induced carbohydrate metabolism disorders and related chronic diseases. Moreover, to evaluate their safety, functionality, and probiotic potential via in vitro simulated test conditions. From 16s-rRNA sequencing, Pediococcus acidilactici (NKUST 803, 845, 858), Lactobacillus plantarum (NKUST 817, 828, 851), Levilactobacillus brevis (NKUST 816, 855) and Lactobacillus acidophilus (NKUST 803, 863) were identified. The results showed that the isolates possessed anti-pathogenic activity, auto-aggregation ability, hydrophobicity (47.44-96.4%), and gastric acid-resistant activity (79-99.1%), which proved their potential for probiotics in nutraceuticals to render hypoglycemic activity or antidiabetic effects to the host positively. Among tested isolates, L. plantarum 817 and P. acidilactici 858 exhibited maximum α-glucosidase inhibitory (AGI) activity of 35-40%. The heat map clearly showed that L. plantarum 817 exhibited the best AGI activity and probiotic potential, among others. These were studied under various simulated gut conditions and safety tests. However, all isolates possess the potential to be used as probiotics in commercial-scale health applications. Pediococcus sp. possesses notable AGI activity but relatively less colonization potential in the gut hence recommended daily intake for positive health effects.

2.
J Food Sci Technol ; 60(4): 1425-1434, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36936123

RESUMEN

The need for high-quality dietary proteins has risen over the years with improvements in the quality of life. Deep eutectic solvents (DESs) have been regarded as potential green alternatives to conventional organic solvents for protein extraction from press cake biomass, meeting the needs of sustainable development goals. Sacha inchi seed meal (SIM) is generated as a by-product of the seed oil extraction industries containing high protein content. The current study presents a novel ultrasound assisted DES method for the extraction of SIM protein in a sequential manner. Four different DESs were screened, out of which choline chloride (ChCl)/glycerol (1:2) gave promising results in protein recovery and was further selected. The sequential ultrasound-ChCl/glycerol could effectively extract high total crude protein content (77.43%) from SIM biomass compared to alone ultrasound (29.21%) or ChCl/glycerol (58.32%) treatment strategies. The SIM protein extracted from ultrasound-ChCl/glycerol exhibited high solubility (94.39%) at alkaline pH and highest in vitro digestibility (71.16%) by digestive enzymes (pepsin and trypsin). The protein characterization by SDS-PAGE and FTIR elucidated the structural properties and presence of different functional groups of SIM protein. Overall, the sequential ultrasound-ChCl/glycerol revealed its significant potential for one-step biorefining of the waste Sacha inchi meal biomass for circular bioeconomy.

3.
Environ Res ; 208: 112782, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35077714

RESUMEN

Potential toxic chemicals, specifically, polycyclic aromatic hydrocarbons (PAHs), are major sediment contaminants. Herein, green seaweed (Ulva lactuca) was used as a feedstock and pyrolyzed at temperature in the range between 300 and 900 °C. The metal-free carbocatalyst (GSBC) for peroxymonosulfate (PMS) activation to degrade PAHs contaminated sediments was studied. The effects of GSBC‒PMS treatment on microbial community abundance was studied as well. The pyrolysis temperature of GSBC preparation affected the PMS activation performance. Results show that GSBC700 exhibited remarkable catalytic characteristics in PAHs degradation by effective activation of PMS. The results also demonstrated that the sulfate radical-carbon-driven advanced oxidation processes (SR-CAOP) reaction achieved 87% and apparent rate constant (kobs) of 6.3 × 10-2 h-1 of total PAHs degradation in 24 h at 3.3 g/L of GSBC, PMS dose of 1 × 10-4 M, and pH 3.0. The degradation of 2-, 3-, 4-, 5-, and 6-ring PAHs was 84, 83, 83, 80, and 89%, respectively. The synergetic effect established between GSBC and PMS enhanced the formation of ROSs, namely, SO4-, HO, and 1O2, which were major species contributing to PAHs degradation. The synergistic effect of π‒π stacking structure and graphitization of GSBC formed electron shuttle, which contributed to PAHs degradation performance. Microbial community structure analyses in the GSBC‒PMS treated sediments showed that the relative abundance of Lactobacillus_rhamnosus species, most of which belonged to the Lactobacillus genus and Firmicutes phylum, which aided in continuing PAHs biodegradation post GSBC‒PMS treatment. Therefore, GSBC can be a promising carbocatalyst produced via biomass-to-biochar conversion as biowaste-to-energy source used in the SR-CAOP-mediated process for sediment remediation.


Asunto(s)
Microbiota , Hidrocarburos Policíclicos Aromáticos , Algas Marinas , Ulva , Biomasa , Sedimentos Geológicos , Peróxidos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Algas Marinas/metabolismo , Ulva/metabolismo
4.
Microb Cell Fact ; 20(1): 112, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090444

RESUMEN

Macro- and microalgae-based foods are becoming popular due to their high nutritious value. The algal biomass is enriched with polysaccharides, protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals. However, the most promising fraction is polysaccharides (PS) or their derivatives (as dietary fibers) which are not entirely fermented by colonic bacteria hence act as potential prebiotic. Primarily, algae become famous as prominent protein sources. Recently, these are widely adopted as functional food (e.g., desserts, dairy products, oil-derivatives, pastas etc.) or animal feed (for poultry, cattle, fish etc.). Besides prebiotic and balanced amino acids source, algae derived compounds implied as therapeutics due to comprising bioactive properties to elicit immunomodulatory, antioxidative, anticancerous, anticoagulant, hepato-protective, and antihypertensive responses. Despite the above potentials, broader research determinations are inevitable to explore these algal compounds until microalgae become a business reality for broader and specific applications in all health domains. However, scale up of algal bioprocess remains a major challenge until commercial affordability is accomplished which can be possible by discovering their hidden potentials and increasing their value and application prospects. This review provides an overview of the significance of algae consumption for several health benefits in humans and animals mainly as prebiotics, however their functional food and animal feed potential are briefly covered. Moreover, their potential to develop an algal-based food industry to meet the people's requirements not only as a sustainable food solution with several health benefits but also as therapeutics is inevitable.


Asunto(s)
Microalgas/química , Fitoquímicos/farmacología , Prebióticos , Algas Marinas/química , Alimentación Animal , Animales , Fibras de la Dieta , Industria de Alimentos , Alimentos Funcionales , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Polisacáridos
5.
Mar Drugs ; 19(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068988

RESUMEN

Fish gelatin and its hydrolysates exhibit a variety of biological characteristics, which include antihypertensive and antioxidant properties. In this study, fish gelatins were extracted from extrusion-pretreated tilapia scales, and then subjected to analyses to determine the physicochemical properties and antioxidant activity of the extracted gelatins. Our findings indicate that TSG2 (preconditioned with 1.26% citric acid) possessed the greatest extraction yield, as well as higher antioxidant activities compared with the other extracted gelatins. Hence, TSG2 was subjected to further hydrolyzation using different proteases and ultrafiltration conditions, which yielded four gelatin hydrolysates: TSGH1, TSGH2, TSGH3, and TSGH4. The results showed that TSGH4 (Pepsin + Pancreatin and ultrafiltration < 3000 Da) had a higher yield and greater antioxidant activity in comparison with the other gelatin hydrolysates. As such, TSGH4 was subjected to further fractionation using a Superdex peptide column and two-stage reverse-phase column HPLC chromatography, yielding a subfraction TSGH4-6-2-b, which possessed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity compared with the other fractions. Further LC-ESI/MS/MS analysis of TSGH4-6-2-b suggested two novel peptides (GYDEY and EPGKSGEQGAPGEAGAP), which could have potential as naturally-occurring peptides with antioxidant properties. These promising results suggest that these antioxidant peptides could have applications in food products, nutraceuticals, and cosmetics.


Asunto(s)
Antioxidantes/farmacología , Cíclidos , Gelatina/química , Gelatina/farmacología , Escamas de Animales/química , Animales , Antioxidantes/química , Fenómenos Químicos , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Cromatografía de Fase Inversa , Proteínas de Peces/química , Proteínas de Peces/aislamiento & purificación , Proteínas de Peces/farmacología , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Gelatina/aislamiento & purificación , Hidrólisis , Peso Molecular , Péptido Hidrolasas/química , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masas en Tándem , Extractos de Tejidos/análisis , Extractos de Tejidos/química , Extractos de Tejidos/aislamiento & purificación , Extractos de Tejidos/farmacología
6.
Artículo en Inglés | MEDLINE | ID: mdl-33617393

RESUMEN

This study evaluated the level of the contaminant of the heavy metals in sludge from different sources and the ecological risk criteria associated with it was also analyzed to establish its reuse in agriculture. The sludge samples were collected from the water plant (WTP), wastewater treatment plant (WWTP), and industrial water treatment plant (IPT) in Taiwan. The inductively coupled plasma mass spectrometry was used to measure the trace metals in sludge. The pollution level and ecological risk criteria for heavy metals in sludge were also used to evaluate its reuse in agriculture. The result shows the average concentrations of trace metals in sludge for three groups (WTP, WWTP, and ITP). Significant correlations were found between concentrations of Zn-Ag (p < 0.001). The higher values of Igeo showed in ITP, indicated Hg to be a major pollutant. In Taiwan, the regulations did not establish the reuse of sludge in agriculture. However, the concentration level of trace metals in sludge was particularly lower than the regular levels in most groups, like WTP and WWTP groups. The industrial sludge was not recommended for the use in agriculture. The results of this study can be used for regular monitoring to establish a reference for sludge management and application to agriculture.


Asunto(s)
Metales Pesados/análisis , Aguas del Alcantarillado/química , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Riego Agrícola/normas , Monitoreo del Ambiente , Medición de Riesgo , Taiwán , Purificación del Agua/normas
7.
Mar Drugs ; 18(10)2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050593

RESUMEN

Type II collagen is an important component of cartilage; however, little is known about its effect on skin wound healing. In this study, type II collagen was extracted from the cartilage of Acipenser baerii and its effect on in vitro and in vivo wound healing was compared to type I collagen derived from tilapia skin. Sturgeon cartilage collagen (SCC) was composed of α1 chains and with a thermal denaturation (Td) at 22.5 and melting temperature (Tm) at 72.5 °C. Coating SCC potentiated proliferation, migration, and invasion of human dermal fibroblast adult (HDFa) cells. Furthermore, SCC upregulated the gene expression of extracellular matrix (ECM) components (col Iα1, col IIIα1, elastin, and Has2) and epithelial-mesenchymal transition (EMT) molecules (N-cadherin, Snail, and MMP-1) in HDFa. Pretreatment with Akt and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated the HDFa invasion caused by SCC. In mice, the application of SCC on dorsal wounds effectively facilitated wound healing as evidenced by 40-59% wound contraction, whereas the untreated wounds were 18%. We observed that SCC reduced inflammation, promoted granulation, tissue formation, and ECM deposition, as well as re-epithelialization in skin wounds. In addition, SCC markedly upregulated the production of growth factors in the dermis, and dermal and subcutaneous white adipose tissue; in contrast, the administration of tilapia skin collagen (TSC) characterized by typical type I collagen was mainly expressed in the epidermis. Collectively, these findings indicate SCC accelerated wound healing by targeting fibroblast in vitro and in vivo.


Asunto(s)
Colágeno Tipo II/farmacología , Fibroblastos/efectos de los fármacos , Peces , Piel/efectos de los fármacos , Cicatrización de Heridas , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Queratinocitos/efectos de los fármacos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
8.
Int J Cancer ; 142(8): 1689-1701, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29197069

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental carcinogenic pollutants and they have become an important issue in food contamination. Dietary intake of PAHs has been recognized as a major route of human exposure. However, the mechanisms behind dietary PAH-induced colorectal cancer (CRC) remain unclear. Several studies have shown that polymethoxyflavones (PMFs) are effective in preventing carcinogen-induced CRC or colitis. In this study, we investigated the preventive effect of PMFs on benzo[a]pyrene/dextran sulfate sodium (BaP/DSS)-induced colorectal tumorigenesis in ICR mice. We found that PMFs significantly prevented BaP/DSS-induced colorectal tumor formation. BaP mutagenic metabolite and DNA adducts were found to be reduced in colonic tissue in the PMFs-treated groups through the modulation of BaP metabolism. At the molecular level, the results of RNA-sequencing indicated that PMFs ameliorated BaP/DSS-induced abnormal molecular mechanism change including activated inflammation, downregulated anti-oxidation targets, and induced metastasis genes. The autophagic defect caused by BaP/DSS-induced tumorigenesis was improved by pretreatment with PMFs. We found BaP/DSS-induced CRC may be a Wnt/ß-catenin independent process. Additionally, consumption of PMFs extracts also altered the composition of gut microbiota and made it similar to that in the control group by increasing butyrate-producing probiotics and decreasing CRC-related bacteria. BaP in combination with DSS significantly induced colorectal tumorigenesis through induced DNA adduct formation, abnormal gene expression, and imbalanced gut microbiota composition. PMFs were a powerful preventive agent that suppressed BaP/DSS-induced CRC via modulating multiple pathways as well as ameliorating autophagic defect. These results demonstrated for the first time the chemopreventive efficacy and comprehensive mechanisms of dietary PMFs for preventing BaP/DSS-induced colorectal carcinogenesis.


Asunto(s)
Autofagia/efectos de los fármacos , Benzo(a)pireno/administración & dosificación , Carcinogénesis/efectos de los fármacos , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/prevención & control , Sulfato de Dextran/administración & dosificación , Flavonas/farmacología , Animales , Carcinógenos Ambientales/efectos adversos , Colitis/inducido químicamente , Masculino , Ratones , Ratones Endogámicos ICR , Mutágenos/efectos adversos
9.
Bioresour Technol ; 400: 130702, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615968

RESUMEN

The bioconversion of lignocellulosic biomass into novel bioproducts is crucial for sustainable biorefineries, providing an integrated solution for circular economy objectives. The current study investigated a novel microwave-assisted acidic deep eutectic solvent (DES) pretreatment of waste cocoa pod husk (CPH) biomass to extract xylooligosaccharides (XOS). The sequential DES (choline chloride/citric acid, molar ratio 1:1) and microwave (450W) pretreatment of CPH biomass was effective in 67.3% xylan removal with a 52% XOS yield from total xylan. Among different XOS of varying degrees of polymerization, a higher xylobiose content corresponding to 69.3% of the total XOS (68.22 mg/g CPH) from liquid fraction was observed. Enzymatic hydrolysis of residual xylan from pretreated CPH biomass with low commercial xylanase (10 IU/g) concentration yielded 24.2% XOS. The MW-ChCl/citric acid synergistic pretreatment approach holds great promise for developing a cost-effective and environmentally friendly method contributing to the sustainable production of XOS from agricultural waste streams.


Asunto(s)
Biomasa , Cacao , Disolventes Eutécticos Profundos , Glucuronatos , Microondas , Oligosacáridos , Oligosacáridos/química , Cacao/química , Cacao/metabolismo , Hidrólisis , Disolventes Eutécticos Profundos/química , Xilanos , Biotecnología/métodos , Ácidos/química , Solventes/química
10.
Sci Total Environ ; 886: 163972, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37164089

RESUMEN

In view of the global climate change concerns, the society is approaching towards the development of 'green' and renewable energies for sustainable future. The non-renewable fossil fuels may be largely replaced by renewable energy sources, which could facilitate sustainable growth, energy development and lessen the reliance on conventional energy sources. The traditional methods employed in biorefineries to estimate the data values for the biofuel production systems are often complicated, time-consuming and labour-intensive. Modern machine learning (ML) technologies hold enormous potential in managing high-dimensional complex scientific tasks and improving decision-making in energy distribution networks and systems. The data-driven probabilistic ML algorithms could be applied to smart biofuel systems and networks that may reduce the cost of experimental research while providing accurate estimates of product yields. The current review demonstrates a thorough understanding of the application of different ML models to regulate and monitor the production of biofuels from waste biomass through prediction, optimization and real-time monitoring. The in-depth analysis of the most recent advancements in ML-assisted biofuel production methods, including thermochemical and biochemical processes is provided. Moreover, the ML models in addressing the issues of biofuel supply chains, case studies, scientific challenges and future direction in ML applications are also summarized.


Asunto(s)
Biocombustibles , Lignina , Biotecnología/métodos , Biomasa
11.
Heliyon ; 9(7): e18316, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519746

RESUMEN

The development of sustainable biorefineries and bioeconomy has been the mandate of most of the governments with major focus on restricting the climate change concerns and finding new strategies to maintain the global food supply chain. Xylooligosaccharides (XOS) are short-chain oligomers which due to their excellent prebiotic potential in the nutraceutical sector has attracted intense research focus in the recent years. The agro-industrial crop and food waste can be utilized for the production of XOS which are derived from hemicellulose fraction (xylan) of the lignocellulosic materials. The extraction of xylan, is traditionally achieved by acidic and alkaline pretreatments which, however, have limited industrial applications. The inclusion of cutting-edge and environmentally beneficial pretreatment methods and technologies such as deep eutectic solvents and green catalysts are preferred. Moreover, the extraction of xylans from biomass using combinatorial pretreatment approaches may help in economizing the whole bioprocess. The current review outlines the factors involved in the xylan extraction and depolymerization processes from different lignocellulosic biomass and the subsequent enzymatic hydrolysis for XOS production. The different types of oligosaccharides and their prebiotic potential for the growth of healthy gut bacteria have also been explained. The introduction of modern molecular technologies has also made it possible to identify enzymes and microorganisms with the desired characteristics for usage in XOS industrial production processes.

12.
Sci Total Environ ; 861: 160560, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36574559

RESUMEN

The grave concerns arisen as a result of environmental pollution and diminishing fossil fuel reserves in the 21st century have shifted the focus on the use of sustainable and environment friendly alternative resources. Lignocellulosic biomass constituted by cellulose, hemicellulose and lignin is an abundantly available natural bioresource. Lignin, a natural biopolymer has over the years gained much importance as a high value material with commercial importance. The present review provides an in-depth knowledge on the journey of lignin from being considered a roadblock to a bridge connecting diverse industries with widescale applications. The successful valorization of lignin for the production of bio-based platform chemicals and fuels has been the subject of intensive investigation. A deeper understanding of lignin characteristics and factors governing the biomass conversion into valuable products can support improved biomass consumption. The components of lignocellulosic biomass might be totally transformed into a variety of value-added products with the improvements in bioprocess techniques that valorize lignin. In this review, the recent advances in the lignin extraction and depolymerization methods that may help in achieving the cost-economics of the bioprocess are summarized and compared. The industrial potential of lignin-derived products such as aromatics, biopolymers, biofuels and agrochemicals are also outlined. Additionally, assessment of the recent research trends in lignin valorization into value-added chemicals has been done and present scenario of technological-industrial applications of lignin with economic perspectives is highlighted.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Tecnología
13.
Bioresour Technol ; 367: 128271, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36351534

RESUMEN

Recently, the world is experiencing a shift from petroleum refineries to biorefineries due to fossil fuel depletion and environmental concerns. To achieve sustainable development of biorefineries and other components of the biofuel production process, eco-friendly and cost-effective approaches are necessary. Therefore, lignocellulosic biomass (LCB) must be exploited in biorefineries for the generation of a broad spectrum of products. The complex structure of LCB prevents its direct saccharification by enzymatic means, so pretreatment is necessary. There are several pretreatment technologies for disrupting the lignocellulosic structure, but hydrothermal pretreatment is the leading pretreatment technology for recovering hemicellulose fraction with a low number of inhibitors and an increased amount of cellulose. The severity of hydrothermal pretreatment plays a principal role in affecting cellulose, hemicellulose, and lignin structure. A detailed account of microwave-assisted hydrothermal pretreatment technologies and the cost-effectiveness, eco-friendliness, and upcoming challenges of this technology for commercialization with the probable solution is presented.


Asunto(s)
Biocombustibles , Lignina , Lignina/química , Biomasa , Celulosa
14.
Bioresour Technol ; 381: 129145, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37169207

RESUMEN

The idea of environment friendly and affordable renewable energy resources has prompted the industry to focus on the set up of biorefineries for sustainable bioeconomy. Lignocellulosic biomass (LCB) is considered as an abundantly available renewable feedstock for the production of biofuels which can potentially reduce the dependence on petrochemical refineries. By utilizing various conversion technologies, an integrated biorefinery platform of LCB can be created, embracing the idea of the 'circular bioeconomy'. The development of effective pretreatment methods and biocatalytic systems by various bioengineering and machine learning approaches could reduce the bioprocessing costs, thereby making biomass-based biorefinery more sustainable. This review summarizes the development and advances in the lignocellulosic biorefineries from the LCB to the final product stage using various different state-of-the-art approaches for the progress of circular bioeconomy. The life cycle assessment which generates knowledge on the environmental impacts related to biofuel production chains is also summarized.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Bioingeniería
15.
Bioresour Technol ; 390: 129829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839650

RESUMEN

Recent years have seen a transition to a sustainable circular economy model that uses agro-industrial waste biomass waste to produce energy while reducing trash and greenhouse gas emissions. Biogas production from lignocellulosic biomass (LCB) is an alternative option in the hunt for clean and renewable fuels. Different approaches are employed to transform the LCB to biogas, including pretreatment, anaerobic digestion (AD), and biogas upgradation to biomethane. To maintain process stability and improve AD performance, machine learning (ML) tools are being applied in real-time monitoring, predicting, and optimizing the biogas production process. An environmental life cycle assessment approach for biogas production systems is essential to calculate greenhouse gas emissions. The current review presents a detailed overview of the utilization of agro-waste for sustainable biogas production. Different methods of waste biomass processing and valorization are discussed that contribute towards developing an efficient agro-waste to biogas-based circular economy.


Asunto(s)
Residuos de Alimentos , Gases de Efecto Invernadero , Residuos Industriales , Biocombustibles , Biomasa
16.
Environ Microbiol ; 14(3): 641-54, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21981769

RESUMEN

A unicellular diazotrophic cyanobacterium strain of Group C, designated TW3, was isolated from the oligotrophic Kuroshio Current of the western Pacific Ocean. To our knowledge, this represents the first successful laboratory culture of a Group C unicellular diazotroph from oceanic water. TW3 cells are green rods, 2.5-3.0 µm in width and 4.0-6.0 µm in length. Phylogenetic analyses of both 16S rRNA and nifH gene fragments indicated that the TW3 sequences were over 98% identical to those of the previously isolated Cyanothece sp. ATCC51142 and Gloeocapsa sp., suggesting that TW3 is a member of the Group C unicellular diazotrophs. In addition, both TW3 and Cyanothece sp. ATCC51142 share morphological characteristics; both strains are sheathless and rod-shaped, display binary fission in a single plane, and possess dispersed thylakoids. TW3 grows aerobically in nitrogen-deficient artificial seawater, and exhibited the highest observed growth rate of 0.035 h(-1) when cultured at 30°C and 140 µmol m(-2) s(-1) of light intensity. The nitrogen fixation rate, when grown optimally using a 12 h/12 h light-dark cycle, was 7.31 × 10(-15) mol N cell(-1) day(-1) . Immunocytochemical staining using Trichodesmium sp. NIBB1067 nitrogenase antiserum revealed the existence of diazotrophic cells sharing morphological characteristics of TW3 in the Kuroshio water from which TW3 was isolated.


Asunto(s)
Cianobacterias/clasificación , Agua de Mar/microbiología , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , Cyanothece/clasificación , Luz , Nitrógeno/análisis , Nitrógeno/metabolismo , Fijación del Nitrógeno/fisiología , Océano Pacífico , Fotoperiodo , Filogenia
17.
Anal Chem ; 84(20): 8635-41, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22967096

RESUMEN

The percentage of glycosylated hemoglobin A1c (%GHbA1c) in human whole blood indicates the average plasma glucose concentration over a prolonged period of time and is used to diagnose diabetes. However, detecting GHbA1c in the whole blood using immunoassays has limited detection sensitivity due to its low percentage in total hemoglobin (tHb) and interference from various glycan moieties in the sample. We have developed a sandwich immunoassay using an antibody microarray on a polydimethylsiloxane (PDMS) substrate modified with fluorinated compounds to detect tHb and glycosylated hemoglobin A1c (GHbA1c) in human whole blood without sample pretreatment. A polyclonal antibody against hemoglobin (Hb) immobilized on PDMS is used as a common capture probe to enrich all forms of Hb followed by detection via monoclonal anti-Hb and specific monoclonal anti-GHbA1c antibodies for tHb and GHbA1c detection, respectively. This method prevents the use of glycan binding molecules and dramatically reduces the background interference, yielding a detection limit of 3.58 ng/mL for tHb and 0.20 ng/mL for GHbA1c. The fluorinated modification on PDMS is superior to the glass substrate and eliminates the need for the blocking step which is required in commercial enzyme linked immunosorbent assay (ELISA) kits. Moreover, the detection sensitivity for GHbA1c is 4-5 orders of magnitude higher, but the required sample amount is 25 times less than the commercial method. On the basis of patient sample data, a good linear correlation between %GHbA1c values determined by our method and the certified high performance liquid chromatography (HPLC) standard method is shown with R(2) > 0.98, indicating the great promise of the developed method for clinical applications.


Asunto(s)
Anticuerpos Inmovilizados/inmunología , Anticuerpos Monoclonales/inmunología , Dimetilpolisiloxanos/química , Hemoglobina Glucada/análisis , Inmunoensayo/instrumentación , Análisis por Matrices de Proteínas/instrumentación , Anticuerpos Monoclonales/análisis , Diabetes Mellitus/sangre , Hemoglobina Glucada/inmunología , Halogenación , Humanos , Sensibilidad y Especificidad
18.
Cell Physiol Biochem ; 30(3): 687-701, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22854649

RESUMEN

BACKGROUND/AIMS: Mitoxanthrone (MX) is an anthracenedione antineoplastic agent. Whether this drug and other related compounds have any effects on ion currents in osteoclasts remains largely unclear. METHODS: In this study, the effects of MX and other related compounds on inwardly rectifying K(+) current (I(K(IR))) were investigated in RAW 264.7 osteoclast precursor cells treated with lipopolysaccharide. RESULTS: The I(K(IR))in these cells are blocked by BaCl(2) (1 mM). MX (1-100 µM) decreased the amplitude of I(K(IR)) in a concentration-dependent manner with an IC(50) value of 6.4 µM. MX also slowed the time course of I(K(IR)) inactivation elicited by large hyperpolarization. Doxorubicin (10 µM), 17ß-estradiol (10 µM) and tertiapin (1 µM) decreased the I(K(IR)) amplitude in these cells. In bafilomycin A(1)-treated cells, MX-mediated block of I(K(IR)) still existed. In cell-attached configuration, when the electrode was filled with MX (10 µM), the activity of inwardly rectifying K(+) (Kir) channels was decreased with no change in single-channel conductance. MX-mediated reduction of channel activity is accompanied by a shortening of mean open time. Under current-clamp conditions, addition of MX resulted in membrane depolarization. Therefore, MX can interact with the Kir channels to decrease the I(K(IR)) amplitude and to depolarize the membrane in these cells. CONCLUSION: The block by this drug of Kir2.1 channels appears to be one of the important mechanisms underlying its actions on the resorptive activity of osteoclasts, if similar results occur in vivo. Targeting at Kir channels may be clinically useful as an adjunctive regimen to anti-cancer drugs (e.g., MX or doxorubicin) in influencing the resorptive activity of osteoclasts.


Asunto(s)
Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Mitoxantrona/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Compuestos de Bario/farmacología , Venenos de Abeja/farmacología , Línea Celular , Cloruros/farmacología , Doxorrubicina/farmacología , Estradiol/farmacología , Cinética , Lipopolisacáridos/toxicidad , Ratones , Osteoclastos/efectos de los fármacos , Osteoclastos/fisiología
19.
Bioresour Technol ; 354: 127153, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35421566

RESUMEN

Consolidated bioprocessing (CBP) is characterized by a single-step production of value-added compounds directly from biomass in a single vessel. This strategy has the capacity to revolutionize the whole biorefinery concept as it can significantly reduce the infrastructure input and use of chemicals for various processing steps which can make it economically and environmentally benign. Although the proof of concept has been firmly established in the past, commercialization has been limited due to the low conversion efficiency of the technology. Either a native single microbe, genetically modified microbe or a consortium can be employed. The major challenge in developing a cost-effective and feasible CBP process is the recognition of bifunctional catalysts combining the capability to use the substrates and transform them into value-added products with high efficiency. This article presents an in-depth analysis of the current developments in CBP around the globe and the possibilities of advancements in the future.


Asunto(s)
Lignina , Tecnología , Biocombustibles , Biomasa , Fermentación , Lignina/metabolismo
20.
Bioengineered ; 13(6): 14730-14748, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36098071

RESUMEN

The increased antibiotic consumption and their improper management led to serious antibiotic pollution and its exposure to the environment develops multidrug resistance in microbes against antibiotics. The entry rate of antibiotics to the environment is much higher than its exclusion; therefore, efficient removal is a high priority to reduce the harmful impact of antibiotics on human health and the environment. Recent developments in cost-effective and efficient biochar preparation are noticeable for their effective removal. Moreover, biochar engineering advancements enhanced biochar remediation performance several folds more than in its pristine forms. Biochar engineering provides several new interactions and bonding abilities with antibiotic pollutants to increase remediation efficiency. Especially heteroatoms-doping significantly increased catalysis of biochar. The main focus of this review is to underline the crucial role of biochar in the abatement of emerging antibiotic pollutants. A detailed analysis of both native and engineered biochar is provided in this article for antibiotic remediation. There has also been discussion of how biochar properties relate to feedstock, production conditions and manufacturing technologies, and engineering techniques. It is possible to produce biochar with different surface functionalities by varying the feedstock or by modifying the pristine biochar with different chemicals and preparing composites. Subsequently, the interaction of biochar with antibiotic pollutants was compared and reviewed. Depending on the surface functionalities of biochar, they offer different types of interactions e.g., π-π stacking, electrostatic, and H-bonding to adsorb on the biochar surface. This review demonstrates how biochar and related composites have optimized for maximum removal performance by regulating key parameters. Furthermore, future research directions and opportunities for biochar research are discussed.


Asunto(s)
Contaminantes Ambientales , Adsorción , Antibacterianos , Carbón Orgánico/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA