Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Arch Biochem Biophys ; 671: 167-174, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31295433

RESUMEN

In Saccharomyces cerevisiae, Sir proteins mediate heterochromatin epigenetic gene silencing. The assembly of silent heterochromatin requires histone deacetylation by Sir2, conformational change of SIR complexes, and followed by spreading of SIR complexes along the chromatin fiber to form extended silent heterochromatin domains. Sir2 couples histone deacetylation and NAD hydrolysis to generate an epigenetic metabolic small molecule, O-acetyl-ADP-ribose (AAR). Here, we demonstrate that AAR physically associates with Sir3 and that polySir3-AAR formation has a specific and essential role in the assembly of silent SIR-nucleosome pre-heterochromatin filaments. Furthermore, we show that AAR is capable of stabilizing binding of the Sir3 BAH domain to the Sir3 carboxyl-terminal region. Our data suggests that for the assembly of SIR-nucleosome pre-heterochromatin filament, the structural rearrangement of SIR-nucleosome is important and result in creating more stable interactions of Sir3, such as the inter-molecule Sir3-Sir3 interaction, and the Sir3-nucleosome interaction within the filaments. In conclusion, our results reveal the importance of AAR, indicating that it not only affects the conformational rearrangement of SIR complexes but also might function as a critical fine-tuning modulatory component of yeast silent SIR-nucleosome pre-heterochromatin by stabilizing the intermolecular interaction between Sir3 N- and C-terminal regions.


Asunto(s)
Heterocromatina/metabolismo , Nucleosomas/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Epigénesis Genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Sirtuina 2/metabolismo
2.
Biochem Biophys Res Commun ; 439(3): 351-6, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24012675

RESUMEN

Receptor tyrosine kinases (RTKs) regulate many cellular processes, and Sprouty2 (Spry2) is known as an important regulator of RTK signaling pathways. Therefore, it is worth investigating the properties of Spry2 in more detail. In this study, we found that Spry2 is able to self-assemble into oligomers with a high-affinity KD value of approximately 16nM, as determined through BIAcore surface plasmon resonance analysis. The three-dimensional (3D) structure of Spry2 was resolved using an electron microscopy (EM) single-particle reconstruction approach, which revealed that Spry2 is donut-shaped with two lip-cover domains. Furthermore, the method of energy dispersive spectrum obtained through EM was analyzed to determine the elements carried by Spry2, and the results demonstrated that Spry2 is a silicon- and iron-containing protein. The silicon may contribute to the electroconductivity of Spry2, and this property exhibits a concentration-dependent feature. This study provides the first report of a silicon- and iron-containing protein, and its 3D structure may allow us (1) to study the potential mechanism through the signal transduction is controlled by switching the electronic transfer on or off and (2) to develop a new type of conductor or even semiconductor using biological or half-biological hybrid materials in the future.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , Animales , Conductividad Eléctrica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hierro/análisis , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Silicio/análisis
3.
Hum Mol Genet ; 18(9): 1566-77, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19208653

RESUMEN

Nephrocystin mutations account for the vast majority of juvenile nephronophthisis, the most common inherited cause of renal failure in children. Nephrocystin has been localized to the ciliary transition zone of epithelial cells or its analogous structure, connecting cilium of retinal photoreceptors. Thus, the retinal degeneration associated with nephronophthisis may be explained by a functional ciliary defect. However, the function of nephrocystin in cilium assembly and maintenance of common epithelial cells and photoreceptors is still obscure. Here, we used Nphp1-targeted mutant mice and transgenic mice expressing EmGFP-tagged nephrocystin to demonstrate that nephrocystin located at connecting cilium axoneme can affect the sorting mechanism and transportation efficiency of the traffic machinery between inner and outer segments of photoreceptors. This traffic machinery is now recognized as intraflagellar transport (IFT); a microtubule-based transport system consisting of motors, IFT particles and associated cargo molecules. Nephrocystin seems to control some of the IFT particle components moving along the connecting cilia so as to regulate this inter-segmental traffic. Our novel findings provide a clue to unraveling the regulatory mechanism of nephrocystin in IFT machinery.


Asunto(s)
Proteínas Portadoras/metabolismo , Cilios/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Proteínas del Citoesqueleto , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , Degeneración Retiniana/genética
4.
Genes (Basel) ; 10(8)2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366171

RESUMEN

O-acetyl-ADP-ribose (AAR) is a metabolic small molecule relevant in epigenetics that is generated by NAD-dependent histone deacetylases, such as Sir2. The formation of silent heterochromatin in yeast requires histone deacetylation by Sir2, structural rearrangement of SIR complexes, spreading of SIR complexes along the chromatin, and additional maturation processing. AAR affects the interactions of the SIR-nucleosome in vitro and enhances the chromatin epigenetic silencing effect in vivo. In this study, using isothermal titration calorimetry (ITC) and dot blotting methods, we showed the direct interaction of AAR with Sir3. Furthermore, through chromatin immunoprecipitation (ChIP)-on-chip and chromatin affinity purification (ChAP)-on chip assays, we discovered that AAR is capable of increasing the extended spreading of Sir3 along telomeres, but not Sir2. In addition, the findings of a quantitative real-time polymerase chain reaction (qRT-PCR) and examinations of an in vitro assembly system of SIR-nucleosome heterochromatin filament were consistent with these results. This study provides evidence indicating another important effect of AAR in vivo. AAR may play a specific modulating role in the formation of silent SIR-nucleosome heterochromatin in yeast.


Asunto(s)
Cromatina/genética , O-Acetil-ADP-Ribosa/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Epigénesis Genética , Regulación Fúngica de la Expresión Génica , Código de Histonas , Unión Proteica , Saccharomyces cerevisiae
5.
Anal Chem ; 80(9): 3412-5, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18355087

RESUMEN

By sputtering organic films with 10 kV, 10 nA C60+ and 0.2 kV, 300 nA Ar+ ion beams concurrently and analyzing the newly exposed surface with X-ray photoelectron spectroscopy, organic thin-film devices including an organic light-emitting diode and a polymer solar cell with an inverted structure are profiled. The chemical composition and the structure of each layer are preserved and clearly observable. Although C60+ sputtering is proven to be useful for analyzing organic thin-films, thick organic-devices cannot be profiled without the low-energy Ar+ beam co-sputtering due to the nonconstant sputtering rate of the C60+ beam. Various combinations of ion-beam doses are studied in this research. It is found that a high dosage of the Ar+ beam interferes with the C60+ ion beam, and the sputtering rate decreases with increasing the total ion current. The results suggest that the low-energy single-atom projectile can disrupt the atom deposition from the cluster ion beams and greatly extend the application of the cluster ion-sputtering. By achievement of a steady sputtering rate while minimizing the damage accumulation, this research paves the way to profiling soft matter and organic electronics.

6.
Mol Biol Cell ; 28(3): 381-386, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27932495

RESUMEN

Yeast silent heterochromatin provides an excellent model with which to study epigenetic inheritance. Previously we developed an in vitro assembly system to demonstrate the formation of filament structures with requirements that mirror yeast epigenetic gene silencing in vivo. However, the properties of these filaments were not investigated in detail. Here we show that the assembly system requires Sir2, Sir3, Sir4, nucleosomes, and O-acetyl-ADP-ribose. We also demonstrate that all Sir proteins and nucleosomes are components of these filaments to prove that they are SIR-nucleosome filaments. Furthermore, we show that the individual localization patterns of Sir proteins on the SIR-nucleosome filament reflect those patterns on telomeres in vivo. In addition, we reveal that magnesium exists in the SIR-nucleosome filament, with a role similar to that for chromatin condensation. These results suggest that a small number of proteins and molecules are sufficient to mediate the formation of a minimal yeast silent pre-heterochromatin in vitro.


Asunto(s)
Silenciador del Gen/fisiología , Nucleosomas/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Sitios de Unión , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Epigenómica/métodos , Heterocromatina/metabolismo , Histonas/metabolismo , Magnesio , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Telómero/metabolismo
7.
Nanotechnology ; 19(25): 255202, 2008 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-21828647

RESUMEN

Using a vertical titania (TiO(2)) nanotube array, an inverted polymer solar cell was constructed with power conversion efficiency up to 2.71%. In this study, self-organized TiO(2) nanotubes arrays were grown by anodizing Ti metal in glycerol electrolyte containing 0.5 wt% NH(4)F and 1.0 wt% H(2)O with 20 V potential. The tube length (∼100 nm) was controlled by the thickness of the sputtered titanium layer on the indium-tin oxide (ITO) substrate. The diameter of the tube was approximately 15-25 nm. After annealing in air at 500 °C for 1 h, nanotubes arrays were crystallized to the anatase phase from the initial amorphous state. Following the infiltration of polymeric semiconductor (poly(3-hexylthiophene) and (6,6)-phenyl C(60) butyric acid methyl ester, P3HT:PCBM), the filled TiO(2) layer had an optical absorption over a range from UV to visible light. The high surface-to-volume ratio of the nanotube arrays structure increased the effective area of the active region. The high efficiency of our solar cell is attributed to the vertical TiO(2) nanotube array's enhanced conduction of photo-induced current due to its charge transport capability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA