Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Ecotoxicol Environ Saf ; 276: 116290, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599154

RESUMEN

Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.


Asunto(s)
Arabidopsis , Estrés Oxidativo , Talio , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Talio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Contaminantes del Suelo/toxicidad
2.
J Synchrotron Radiat ; 27(Pt 1): 217-221, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868755

RESUMEN

Time-resolved X-ray excited optical luminescence (TR-XEOL) was developed successfully for the 23A X-ray nanoprobe beamline located at the Taiwan Photon Source (TPS). The advantages of the TR-XEOL facility include (i) a nano-focused X-ray beam (<60 nm) with excellent spatial resolution and (ii) a streak camera that can simultaneously record the XEOL spectrum and decay time. Three time spans, including normal (30 ps to 2 ns), hybrid (30 ps to 310 ns) and single (30 ps to 1.72 µs) bunch modes, are available at the TPS, which can fulfil different experimental conditions involving samples with various lifetimes. It is anticipated that TR-XEOL at the TPS X-ray nanoprobe could provide great characterization capabilities for investigating the dynamics of photonic materials.

3.
Opt Express ; 26(3): 2731-2739, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401809

RESUMEN

Polarization-dependent hard X-ray excited optical luminescence (XEOL) was used to study not only the optical properties but also the crystallographic orientations of a non-polar a-plane ZnO wafer. In addition to a positive-edge jump and extra oscillations in the near-band-edge (NBE) XEOL yield, we observed a blue shift of the NBE emission peak that follows the polarization-dependent X-ray absorption near-edge structure (XANES) as the X-ray energy is tuned across the Zn K-edge. This NBE blue shift is caused by the larger X-ray absorption, generating higher free carriers to reduce the exciton-LO phonon coupling, which causes a decrease in the exciton activation energy. The extra oscillations in XANES and XEOL as the polarization is set parallel to the c-axis is attributed to simultaneous excitations of the Zn 4p - O 2pπ -bond along the c-axis and the bilayer σ-bond, whereas only the σ-bond is excited when the polarization is perpendicular to the c-axis. The polarization-dependent XEOL spectra can be used to determine the crystallographic orientations.

4.
Anal Chem ; 84(11): 5140-5, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22545942

RESUMEN

Convenient, rapid, and accurate detection of chemical and biomolecules would be a great benefit to medical, pharmaceutical, and environmental sciences. Many chemical and biosensors based on metal nanoparticles (NPs) have been developed. However, as a result of the inconvenience and complexity of most of the current preparation techniques, surface plasmon-based test papers are not as common as, for example, litmus paper, which finds daily use. In this paper, we propose a convenient and practical technique, based on the photothermal effect, to fabricate the plasmonic test paper. This technique is superior to other reported methods for its rapid fabrication time (a few seconds), large-area throughput, selectivity in the positioning of the NPs, and the capability of preparing NP arrays in high density on various paper substrates. In addition to their low cost, portability, flexibility, and biodegradability, plasmonic test paper can be burned after detecting contagious biomolecules, making them safe and eco-friendly.


Asunto(s)
Técnicas Biosensibles , Cisteína/análisis , Nanopartículas del Metal/química , Tiras Reactivas/química , Colorimetría , Oro/química , Tecnología Química Verde , Calor , Rayos Láser , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Rastreo , Papel , Procesos Fotoquímicos , Soluciones
5.
Int J Mol Sci ; 13(3): 3718-3737, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22489178

RESUMEN

This study synthesized a europium (Eu(3+)) complex Eu(DBM)(3)Cl-MIP (DBM = dibenzoyl methane; Cl-MIP = 2-(2-chlorophenyl)-1-methyl-1H-imidazo[4,5-f][1,10]phenanthroline) dispersed in a benzyl methacrylate (BMA) monomer and treated with ultraviolet (UV) light for polymerization. Spectral results showed that the europium complex containing an antenna, Cl-MIP, which had higher triplet energy into the Eu(3+) energy level, was an energetically enhanced europium emission. Typical stacking behaviors of π-π interactions between the ligands and the Eu(3+)-ion were analyzed using single crystal X-ray diffraction. Regarding the luminescence performance of this europium composite, the ligand/defect emission was suppressed by dispersion in a poly-BMA (PBMA) matrix. The underlying mechanism of the effective enhancement of the pure Eu(3+) emission was attributed to the combined effects of structural modifications, defect emissions, and carrier charge transfer. Fluorescence spectra were compared to the composite of optimized Eu3+ emission where they were subsequently chelated to four metal ions via carboxylate groups on the BMA unit. The optical enhanced europium composite clearly demonstrated highly efficient optical responses and is, therefore a promising application as an optical detection material.


Asunto(s)
Europio/química , Colorantes Fluorescentes/química , Luminiscencia , Metacrilatos/química , Fluorescencia , Ligandos , Estructura Molecular , Fenantrolinas/química , Fármacos Fotosensibilizantes , Espectrometría de Fluorescencia , Difracción de Rayos X
6.
Biomater Sci ; 10(2): 410-422, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-34860214

RESUMEN

Healthcare-associated infections are common causes of morbidity and mortality. Advanced nanotechnology provides a means of overcoming this problem, but it remains challenging to develop universal coating strategies for decorating antimicrobial nanomaterials onto various clinical devices. In this paper, we propose a general silane-based method for immobilizing monolayer metal nanoparticle (NP) arrays onto any type of substrate surface-especially for a diverse range of clinical implantable devices. The surface silanization was achieved simply through the adsorption of N1-(3-trimethoxysilylpropyl)diethylenetriamine (TMS), regardless of the material (polymer, metal, oxide) or morphology (flat, curved, textured) of the substrate, with no need for pretreatment or expensive instrumentation. Monolayers of various nanostructures (Ag, Au, and hollow Au NPs) were then decorated rapidly onto the TMS-treated substrates, thereby further functionalizing their surfaces. In particular, immobilization of the Ag NPs resulted in excellent anti-biofilm efficacy against three clinically life-threatening pathogens: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Sustained release of Ag+ ions led to durable inhibition of bacterial attachment for up to 28 days. Studies with NIH3T3 fibroblasts revealed that the Ag NP arrays displayed no cytotoxicity toward mammalian cells. Overall, this universal coating process appears to be an innovative method for the surface-functionalization of diverse materials and devices employed in the fields of energy, sensing, and medicine-especially to prevent healthcare-associated infections arising from the use of clinical implantable devices in hospitals.


Asunto(s)
Biopelículas , Nanopartículas del Metal , Adsorción , Animales , Antibacterianos/farmacología , Ratones , Células 3T3 NIH , Staphylococcus aureus
7.
Chemosphere ; 307(Pt 4): 135799, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35931251

RESUMEN

The morphology and metal oxidation states of atmospheric aerosols are pertinent to their formation processes and ensuing interactions with surrounding gases, vapors and other environments upon deposition, such as human respiratory tract, soil and water. Although much progress has been made in recent years through single-particle techniques, considerably less is known with respect to the three-dimensional (3D) internal morphology of single atmospheric aerosol particles due to the limited penetration depth of electron microscopy. In this study, for the first time, a novel synchrotron-based transmission X-ray microscopy (TXM) methodology has been developed to visualize the 3D internal chemical mixing state and structure of single particles. The results show that the TXM is more applicable to the imaging of solid particles containing high-density elements, e.g., iron (Fe), aluminum (Al), silicone (Si), carbon (C) and sulfur (S), and/or solid particles of sizes larger than about 100 nm. In addition, the TXM is capable to reveal the fine 3D topographic features of single particles. The derived 3D internal and external information would be difficult to discern in the 2D images from electron microscopy. The TXM 3D images illustrate that aerosol particles exhibit complex internal mixing state and structure, e.g., homogeneously-, heterogeneously-mixed, multiple inclusions, fibrous, porous, and core-shell configuration. When coupled with the synchrotron-based X-ray fluorescence spectrometry (XRF) and absorption near-edge spectroscopy (XANES) of an X-ray nanoprobe in the energy range of 4-15 keV, the 3D morphology of single particles is further supplemented with the spatial distribution and oxidation sates of selected elements, including Fe, vanadium (V), manganese (Mn), chromium (Cr) and arsenic (As). The presented cross-platform, synchrotron-based methodology shows promise in complementing existing single-particle techniques and providing new insights to the heterogeneity of single-particle micro-physicochemical states relevant to the aerosol chemistry, optical properties, and their environmental and health impacts.


Asunto(s)
Arsénico , Manganeso , Aerosoles/análisis , Aluminio/análisis , Carbono , Cromo/análisis , Gases/análisis , Humanos , Hierro/química , Manganeso/análisis , Siliconas , Suelo , Azufre , Sincrotrones , Vanadio/análisis , Agua/análisis
8.
Phys Chem Chem Phys ; 13(13): 5747-52, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21321717

RESUMEN

In this paper we demonstrate an optical storage medium having advantages of ultrahigh contrast, superior stability, and broadband working wavelengths. Combining a single shot of deep-ultraviolet (UV) laser illumination with a Au particle-assisted etching process, we formed broadband antireflective, one-dimensional silicon nanowire arrays (SiNWs) with selectively at specific positions. Optical measurements and three-dimensional finite-difference time domain (3D-FDTD) simulations revealed ultrahigh reflection contrast between the Au and the SiNWs for both far- and near-field regimes. Relative to typical organic-based storage media, Au films and SiNWs are more stable, both chemically and thermally; therefore, we suspect that this new storage medium would exhibit high stability toward moisture, sunshine, and elevated temperatures.

9.
ACS Appl Mater Interfaces ; 13(32): 38090-38104, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34342219

RESUMEN

Much effort has been focused on novel nanomedicine for cancer therapy. However, tumor hypoxia limits the efficacy of various cancer therapeutics. Herein, we constructed a self-sufficient hybrid enzyme-based silk fibroin hydrogel system, consisting of Pt-decorated hollow Ag-Au trimetallic nanocages (HGN@Pt) and glucose oxidase (GOx), to supply O2 continuously and consume glucose concurrently and, thereby, synergistically enhance the anti-cancer efficacy of a combined starvation and photothermal therapy operating in a hypoxic tumor microenvironment. Thanks to the cooperative effects of the active surface atoms (resulting from the island-like features of the Pt coating), the intrinsically hollow structure, and the strain effect induced by the trimetallic composition, HGN@Pt displayed efficient catalase-like activity. The enhancement in the generation of O2 through the decomposition of H2O2 mediated by the as-designed nanozyme was greater than 400% when compared with that of hollow Ag-Pt bimetallic nanospheres or tiny Pt nanoparticles. Moreover, in the presence of HGN@Pt, significant amounts of O2 could be generated within a few minutes, even in an acidic buffer solution (pH 5.8-6.5) containing a low concentration of H2O2 (100-500 µM). Because HGN@Pt exhibited a strong surface plasmon resonance peak in the near-infrared wavelength range, it could be used as a photothermal agent for hyperthermia therapy. Furthermore, GOx was released gradually from the SF hydrogel into the tumor microenvironment to mediate the depletion of glucose, leading to glucose starvation-induced cancer cell death. Finally, the O2 supplied by HGN@Pt overcame the hypoxia of the microenvironment and, thereby, promoted the starvation therapeutic effect of the GOx-mediated glucose consumption. Meanwhile, the GOx-produced H2O2 from the oxidation of glucose could be used to regenerate O2 and, thereby, construct a complementary circulatory system. Accordingly, this study presents a self-sufficient hybrid enzyme-based system that synergistically alleviates tumor hypoxia and induces an anti-cancer effect when combined with irradiation of light from a near-infrared laser.


Asunto(s)
Nanopartículas/uso terapéutico , Neoplasias/terapia , Terapia Fototérmica/métodos , Hipoxia Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos BALB C
10.
ACS Nano ; 15(3): 4789-4801, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33645990

RESUMEN

Here, a current-accelerated phase cycling by an in situ current-induced oxidation process was demonstrated to reversibly switch the local metallic Cu and semiconducting Cu2O phases of patterned polycrystalline copper nanobelts. Once the Cu nanobelts were applied by a direct-current bias of ∼0.5 to 1 V in air with opposite polarities, the resistance between several hundred ohms and more than MΩ can be manipulated. In practice, the thickness of 60 nm with a moderate grain size inhibiting both electromigration and permanent oxidation is the optimized condition for reversible switching when the oxygen supply is sufficient. More than 40% of the copper localized beneath the positively biased electrode was oxidized assisted by the Joule heating, blocking the current flow. On the contrary, the reduction reaction of Cu2O was activated by the thermally assisted electromigration of Cu atoms penetrating the interlayer at the reverse bias. Finally, based on a high on/off ratio, the fast switching and the scalable production, reusable feasibility based on copper nanobelts such as the memristor array was demonstrated.

11.
Nano Lett ; 9(5): 1839-43, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19338282

RESUMEN

A new and general approach to achieving efficient electrically driven light emission from a Si-based nano p-n junction array is introduced. A wafer-scale array of p-type silicon nanotips were formed by a single-step self-masked dry etching process, which is compatible with current semiconductor technologies. On top of the silicon nanotip array, a layer of n-type ZnO film was grown by pulsed laser deposition. Both the narrow line width of 10 nm in cathodoluminescence spectra and the appearance of multiphonon Raman spectra up to the fourth order indicate the excellent quality of the ZnO film. The turn-on voltage of our ZnO/Si nanotip array is found to be approximately 2.4 V, which is 2 times smaller than its thin film counterpart. Moreover, electroluminescence (EL) from our ZnO/Si nanotips array light-emitting diode (LED) has been demonstrated. Our results could open up new possibilities to integrate silicon-based optoelectronic devices, such as highly efficient LEDs, with standard Si ultralarge-scale integrated technology.

12.
Sci Rep ; 9(1): 207, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30659221

RESUMEN

The multifunctional hard X-ray nanoprobe at Taiwan Photon Source (TPS) exhibits the excellent ability to simultaneously characterize the X-ray absorption, X-ray excited optical luminescence (XEOL) as well as the dynamics of XEOL of materials. Combining the scanning electron microscope (SEM) into the TPS 23A end-station, we can easily and quickly measure the optical properties to map out the morphology of a ZnO microrod. A special phenomenon has been observed that the oscillations in the XEOL associated with the confinement of the optical photons in the single ZnO microrod shows dramatical increase while the X-ray excitation energy is set across the Zn K-edge. Besides having the nano-scale spatial resolution, the synchrotron source also gives a good temporal domain measurement to investigate the luminescence dynamic process. The decay lifetimes of different emission wavelengths and can be simultaneously obtained from the streak image. Besides, SEM can provide the cathodoluminescence (CL) to be a complementary method to analyze the emission properties of materials, we anticipate that the X-ray nanoprobe will open new avenues with great characterization ability for developing nano/microsized optoelectronic devices.

13.
Nanoscale ; 7(5): 1667-77, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25369861

RESUMEN

In this study, an eco-friendly and ultrasensitive paper substrate is developed for surface-enhanced Raman scattering (SERS) with performance approaching single molecule detection. By exploiting the laser-induced photothermal effect, paper fibrils with hybrid micro- and nanostructures can facilitate the formation of highly dense metal nanoparticles (NPs) after a single shot of laser illumination. Metal films deposited on the paper substrates feature discontinuous morphologies, with the fragments acting as multiple nucleation sites. Because thermal conductivity is low on the broken films and the underlying paper fibrils, the incident energy is absorbed efficiently. Moreover, the quasi-three-dimensional distribution of NPs on the SERS paper greatly enhances the SERS signals within the effective collection volume of a Raman microscope. As a result of the large number of highly effective hot spots and the condensation effect, the hydrophobic SERS paper provides SERS signals with stable and uniform reproducibility throughout the detection area. The limits of detection when using the paper substrates reach the attomolar (10(-18) M) level, thereby approaching single molecule detection.

14.
Nanoscale ; 5(6): 2421-8, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23400221

RESUMEN

In this study, we developed a new method-based on laser-induced jets of nanoparticles (NPs) and air drag forces-to select the particle size of NP arrays. First, the incident wavelength of an excimer laser was varied to ensure good photo-to-thermal energy conversion efficiency. We then exploited air drag forces to select NPs with sizes ranging from 5 to 50 nm at different captured distances. Controlling the jet distances allowed us to finely tune the localized surface plasmon resonance (LSPR) wavelength. The shifting range of the LSPR wavelengths of the corresponding NP arrays prepared using the laser-induced jet was wider than that of a single NP or an NP dimer. We further calculated the relationship between the air drag force and the diameter of the NPs to provide good control over the mean NP size (capture size ≧ 300 µm) by varying the capture distance. Laser-induced jets of NPs could also be used to fabricate NP arrays on a variety of substrates, including Si, glass, plastic, and paper. This method has the attractive features of rapid, large-area preparation in an ambient environment, no need for further thermal annealing treatment, ready control over mean particle size, and high selectivity in the positioning of NP arrays. Finally, we used this method to prepare large NP arrays for acting hot spots on surface-enhanced Raman scattering-active substrates, and 10(-12) M R6G can be detected. Besides, we also prepare small NP arrays to act as metal catalysts for constructing low-reflection, broadband light trapping nanostructures on Si substrates.

15.
PLoS One ; 8(12): e84898, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386433

RESUMEN

OBJECTIVE: This research was designed to investigate the effects of low pressure radio-frequency (RF) oxygen plasma treatment (OPT) on the surface of commercially pure titanium (CP-Ti) and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time. MATERIALS AND METHODS: CP-Ti and Ti6Al4V discs were both classified into 4 groups: untreated, treated with OP generated by using oxygen (99.98%) for 5, 10, and 30 min, respectively. After OPT on CP-Ti and Ti6Al4V samples, scanning probe microscopy, X-ray photoelectron spectrometry (XPS), and contact angle tests were conducted to determine the surface topography, elemental composition and hydrophilicity, respectively. The change of surface morphology was further studied using sputtered titanium on silicon wafers. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and F-actin immunofluorescence stain were performed to investigate the viability and spreading behavior of cultivated MG-63 cells on the samples. RESULTS: The surface roughness was most prominent after 5 min OPT in both CP-Ti and Ti6Al4V, and the surface morphology of sputtered Ti sharpened after the 5 min treatment. From the XPS results, the intensity of Ti(°), Ti(2+), and Ti(3+) of the samples' surface decreased indicating the oxidation of titanium after OPT. The water contact angles of both CP-Ti and Ti6Al4V were increased after 5 min OPT. The results of MTT assay demonstrated MG-63 cells proliferated best on the 5 min OP treated titanium sample. The F-actin immunofluorescence stain revealed the cultivated cell number of 5 min treated CP-Ti/Ti6Al4V was greater than other groups and most of the cultivated cells were spindle-shaped. CONCLUSIONS: Low pressure RF oxygen plasma modified both the composition and the morphology of titanium samples' surface. The CP-Ti/Ti6Al4V treated with 5 min OPT displayed the roughest surface, sharpest surface profile and best biocompatibility.


Asunto(s)
Proliferación Celular , Ensayo de Materiales , Oxígeno/química , Ondas de Radio , Titanio/química , Línea Celular Tumoral , Humanos , Oxidación-Reducción , Propiedades de Superficie
16.
Biosens Bioelectron ; 33(1): 267-73, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22326893

RESUMEN

In this study, we prepared metallic corrugated structures for use as highly sensitive plasmonic sensors. Relying on the direct nanoimprint-in-metal method, fabrication of this metallic corrugated structure was readily achieved in a single step. The metallic corrugated structures were capable of sensing both surface plasmon resonance (SPR) wavelengths and index-matching effects. The corrugated Au films exhibited high sensitivity (ca. 800 nm/RIU), comparable with or even higher than those of other reported SPR-based sensors. Because of the unique index-matching effect, refractometric sensing could also be performed by measuring the transmission intensity of the Au/substrate SPR mode-conveniently, without a spectrometer. In the last, we demonstrated the corrugated Au film was capable of sensing biomolecules, revealing the ability of the structure to be a highly sensitive biosensor.


Asunto(s)
Técnicas Biosensibles/métodos , Metales/química , Resonancia por Plasmón de Superficie/métodos , Oro/química
17.
ACS Nano ; 4(1): 165-73, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-19968294

RESUMEN

In this paper, we report a new optical data storage method: photomodification of hollow gold nanoparticle (HGN) monolayers induced by one-shot deep-ultraviolet (DUV) KrF laser recording. As far as we are aware, this study is the first to apply HGNs in optical data storage and also the first to use a recording light source for the metal nanoparticles (NPs) that is not a surface plasmon resonance (SPR) wavelength. The short wavelength of the recording DUV laser improved the optical resolution dramatically. We prepared HGNs exhibiting two absorbance regions: an SPR peak in the near-infrared (NIR) region and an intrinsic material extinction in the DUV region. A single pulse from a KrF laser heated the HGNs and transformed them from hollow structures to smaller solid spheres. This change in morphology for the HGNs was accompanied by a significant blue shift of the SPR peak. Employing this approach, we demonstrated its patterning ability with a resolving power of a half-micrometer (using a phase mask) and developed a readout method (using a blue-ray laser microscope). Moreover, we prepared large-area, uniform patterns of monolayer HGNs on various substrates (glass slides, silicon wafers, flexible plates). If this spectral recording technique could be applied onto thin flexible tapes, the recorded data density would increase significantly relative to that of current rigid discs (e.g., compact discs).


Asunto(s)
Rayos Láser , Nanopartículas del Metal/química , Fenómenos Ópticos , Procesos Fotoquímicos , Rayos Ultravioleta , Vidrio/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Silicio/química , Análisis Espectral , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA