Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Immunol ; 211(10): 1494-1505, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37747298

RESUMEN

The differentiation of neural crest (NC) cells into various cell lineages contributes to the formation of many organs, including the thymus. In this study, we explored the role of NC cells in thymic T cell development. In double-transgenic mice expressing NC-specific Cre and the Cre-driven diphtheria toxin receptor, plasma noradrenaline and adrenaline levels were significantly reduced, as were thymic T cell progenitors, when NC-derived cells were ablated with short-term administration of diphtheria toxin. Additionally, yellow fluorescent protein+ NC-derived mesenchymal cells, perivascular cells, and tyrosine hydroxylase+ sympathetic nerves in the thymus significantly decreased. Furthermore, i.p. administration of 6-hydroxydopamine, a known neurotoxin for noradrenergic neurons, resulted in a significant decrease in thymic tyrosine hydroxylase+ nerves, a phenotype similar to that of depleted NC-derived cells, whereas administration of a noradrenaline precursor for ablating NC-derived cells or sympathetic nerves rarely rescued this phenotype. To clarify the role of NC-derived cells in the adult thymus, we transplanted thymus into the renal capsules of wild-type mice and observed abnormal T cell development in lethally irradiated thymus with ablation of NC-derived cells or sympathetic nerves, suggesting that NC-derived cells inside and outside of the thymus contribute to T cell development. In particular, the ablation of NC-derived mesenchymal cells in the thymus decreases the number of thymocytes and T cell progenitors. Overall, ablation of NC-derived cells, including sympathetic nerves, in the thymus leads to abnormal T cell development in part by lowering plasma noradrenalin levels. This study reveals that NC-derived cells including mesenchymal cells and sympathetic nerves within thymus regulate T cell development.


Asunto(s)
Cresta Neural , Norepinefrina , Ratones , Animales , Tirosina 3-Monooxigenasa , Diferenciación Celular , Ratones Transgénicos , Timo
2.
Heart Vessels ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797744

RESUMEN

It remains to be elucidated whether Ca2+ antagonists induce pharmacological preconditioning to protect the heart against ischemia/reperfusion injury. The aim of this study was to determine whether and how pretreatment with a Ca2+ antagonist, azelnidipine, could protect cardiomyocytes against hypoxia/reoxygenation (H/R) injury in vitro. Using HL-1 cardiomyocytes, we studied effects of azelnidipine on NO synthase (NOS) expression, NO production, cell death and apoptosis during H/R. Action potential durations (APDs) were determined by the whole-cell patch-clamp technique. Azelnidipine enhanced endothelial NOS phosphorylation and NO production in HL-1 cells under normoxia, which was abolished by a heat shock protein 90 inhibitor, geldanamycin, and an antioxidant, N-acetylcysteine. Pretreatment with azelnidipine reduced cell death and shortened APDs during H/R. These effects of azelnidipine were diminished by a NOS inhibitor, L-NAME, but were influenced by neither a T-type Ca2+ channel inhibitor, NiCl2, nor a N-type Ca2+ channel inhibitor, ω-conotoxin. The azelnidipine-induced reduction in cell death was not significantly enhanced by either additional azelnidipine treatment during H/R or increasing extracellular Ca2+ concentrations. RNA sequence (RNA-seq) data indicated that azelnidipine-induced attenuation of cell death, which depended on enhanced NO production, did not involve any significant modifications of gene expression responsible for the NO/cGMP/PKG pathway. We conclude that pretreatment with azelnidipine protects HL-1 cardiomyocytes against H/R injury via NO-dependent APD shortening and L-type Ca2+ channel blockade independently of effects on gene expression.

3.
Ann Plast Surg ; 90(2): 171-179, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688861

RESUMEN

ABSTRACT: Platelet-rich plasma (PRP) and adipose-derived stem cells (ADSCs) are known to secrete angiogenic factors that contribute to the treatment of intractable ulcers. The combination of PRP and ADSCs may enhance their angiogenic effects. However, it remains unclear whether treatment of ADSCs with PRP influences angiogenesis. We studied whether the conditioned medium from PRP-treated ADSCs under hypoxic conditions exerts angiogenic effects. Although PRP stimulated the proliferation of ADSCs obtained from rats, it decreased the mRNA levels of vascular endothelial growth factor, hepatocyte growth factor, and TGF-ß1, but not of basic fibroblast growth factor, under hypoxia. The conditioned medium of PRP-treated ADSCs inhibited endothelial nitric oxide synthase phosphorylation, decreased NO production, and suppressed tube formation in human umbilical vein endothelial cells. Transplantation of ADSCs alone increased both blood flow and capillary density of the ischemic limb; however, its combination with PRP did not further improve blood flow or capillary density. This suggests that both conditioned medium of ADSCs treated with PRP and combination of PRP with ADSCs transplantation may attenuate the phosphorylation of endothelial nitric oxide synthase and angiogenesis.


Asunto(s)
Plasma Rico en Plaquetas , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratas , Animales , Medios de Cultivo Condicionados/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Óxido Nítrico Sintasa de Tipo III , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Células Madre/metabolismo , Plasma Rico en Plaquetas/metabolismo , Tejido Adiposo/metabolismo , Células Cultivadas
4.
Mol Biol Rep ; 49(7): 5939-5952, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35368226

RESUMEN

BACKGROUND: Gout is usually found in patients with atrial fibrillation (AF). K+ efflux is a common trigger of NLRP3 inflammasome activation which is involved in the pathogenesis of AF. We investigated the role of the K+ channel Kv1.5 in monosodium urate crystal (MSU)-induced activation of the NLRP3 inflammasome and electrical remodeling in mouse and human macrophages J774.1 and THP-1, and mouse atrial myocytes HL-1. METHODS AND RESULTS: Macrophages, primed with lipopolysaccharide (LPS), were stimulated by MSU. HL-1 cells were incubated with the conditioned medium (CM) from MSU-stimulated macrophages. Western blot, ELISA and patch clamp were used. MSU induced caspase-1 expression in LPS-primed J774.1 cells and IL-1ß secretion, suggesting NLRP3 inflammasome activation. A selective Kv1.5 inhibitor, diphenyl phosphine oxide-1 (DPO-1), and siRNAs against Kv1.5 suppressed the levels of caspase-1 and IL-1ß. MSU reduced intracellular K+ concentration which was prevented by DPO-1 and siRNAs against Kv1.5. MSU increased expression of Hsp70, and Kv1.5 on the plasma membrane. siRNAs against Hsp70 were suppressed but heat shock increased the expression of Hsp70, caspase-1, IL-1ß, and Kv1.5 in MSU-stimulated J774.1 cells. The CM from MSU-stimulated macrophages enhanced the expression of caspase-1, IL-1ß and Kv1.5 with increased Kv1.5-mediated currents that shortened action potential duration in HL-1 cells. These responses were abolished by DPO-1 and a siRNA against Kv1.5. CONCLUSIONS: Kv1.5 regulates MSU-induced activation of NLRP3 inflammasome in macrophages. MSUrelated activation of NLRP3 inflammasome and electrical remodeling in HL-1 cells are via macrophages. Kv1.5 may have therapeutic value for diseases related to gout-induced activation of the NLRP3 inflammsome, including AF.


Asunto(s)
Remodelación Atrial , Gota , Canal de Potasio Kv1.5/metabolismo , Animales , Caspasa 1/metabolismo , Gota/tratamiento farmacológico , Gota/metabolismo , Gota/patología , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/genética , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/farmacología
5.
Circ J ; 85(5): 657-666, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33716265

RESUMEN

BACKGROUND: Although adipose-derived stem cell (ADSC) sheets improve the cardiac function after myocardial infarction (MI), underlying mechanisms remain to be elucidated. The aim of this study was to determine the fate of transplanted ADSC sheets and candidate angiogenic factors released from ADSCs for their cardiac protective actions.Methods and Results:MI was induced by ligation of the left anterior descending coronary artery. Sheets of transgenic (Tg)-ADSCs expressing green fluorescence protein (GFP) and luciferase or wild-type (WT)-ADSCs were transplanted 1 week after MI. Both WT- and Tg-ADSC sheets improved cardiac functions evaluated by echocardiography at 3 and 5 weeks after MI. Histological examination at 5 weeks after MI demonstrated that either sheet suppressed fibrosis and increased vasculogenesis. Luciferase signals from Tg-ADSC sheets were detected at 1 and 2 weeks, but not at 4 weeks, after transplantation. RNA sequencing of PKH (yellow-orange fluorescent dye with long aliphatic tails)-labeled Tg-ADSCs identified mRNAs of 4 molecules related to angiogenesis, including those of Esm1 and Stc1 that increased under hypoxia. Administration of Esm1 or Stc1 promoted tube formation by human umbilical vein endothelial cells. CONCLUSIONS: ADSC sheets improved cardiac contractile functions after MI by suppressing cardiac fibrosis and enhancing neovascularization. Transplanted ADSCs existed for >2 weeks on MI hearts and produced the angiogenic factors Esm1 and Stc1, which may improve cardiac functions after MI.


Asunto(s)
Tejido Adiposo , Insuficiencia Cardíaca , Infarto del Miocardio , Inductores de la Angiogénesis , Animales , Insuficiencia Cardíaca/terapia , Células Endoteliales de la Vena Umbilical Humana , Humanos , Infarto del Miocardio/terapia , Ratas , Trasplante de Células Madre
6.
Circ J ; 83(11): 2282-2291, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31527337

RESUMEN

BACKGROUND: Treatment of myocardial infarction (MI) includes inhibition of the sympathetic nervous system (SNS). Cell-based therapy using adipose-derived stem cells (ASCs) has emerged as a novel therapeutic approach to treat heart failure in MI. The purpose of this study was to determine whether a combination of ASC transplantation and SNS inhibition synergistically improves cardiac functions after MI.Methods and Results:ASCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ASC cells, mRNA levels of angiogenic factors under normoxia or hypoxia, and the effects of norepinephrine and a ß-blocker, carvedilol, on the mRNA levels were determined. Hypoxia increased vascular endothelial growth factor (VEGF) mRNA in ASCs. Norepinephrine further increased VEGF mRNA; this effect was unaffected by carvedilol. VEGF promoted VEGF receptor phosphorylation and tube formation of human umbilical vein endothelial cells, which were inhibited by carvedilol. In in vivo studies using a rat MI model, transplanted ASC sheets improved contractile functions of MI hearts; they also facilitated neovascularization and suppressed fibrosis after MI. These beneficial effects of ASC sheets were abolished by carvedilol. The effects of ASC sheets and carvedilol on MI heart functions were confirmed by Langendorff perfusion experiments using isolated hearts. CONCLUSIONS: ASC sheets prevented cardiac dysfunctions and remodeling after MI in a rat model via VEGF secretion. Inhibition of VEGF effects by carvedilol abolished their beneficial effects.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carvedilol/farmacología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Infarto del Miocardio/cirugía , Grasa Subcutánea/citología , Función Ventricular Izquierda/efectos de los fármacos , Animales , Hipoxia de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Neovascularización Fisiológica/efectos de los fármacos , Fosforilación , Ratas Endogámicas Lew , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Recuperación de la Función , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación Ventricular/efectos de los fármacos
7.
Circ J ; 83(4): 718-726, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30787218

RESUMEN

BACKGROUND: Intracellular uric acid is known to increase the protein level and channel current of atrial Kv1.5; however, mechanisms of the uric acid-induced enhancement of Kv1.5 expression remain unclear. Methods and Results: The effects of uric acid on mRNA and protein levels of Kv1.5, as well as those of Akt, HSF1 and Hsp70, in HL-1 cardiomyocytes were studied by using qRT-PCR and Western blotting. The uptake of uric acid was measured using radio-labeled uric acid. The Kv1.5-mediated channel current was also measured by using patch clamp techniques. Uric acid up-taken by HL-1 cells significantly increased the level of Kv1.5 proteins in a concentration-dependent manner, with this increase abolished by an uric acid transporter inhibitor. Uric acid slowed degradation of Kv1.5 proteins without altering its mRNA level. Uric acid enhanced phosphorylation of Akt and HSF1, and thereby increased both transcription and translation of Hsp70; these effects were abolished by a PI3K inhibitor. Hsp70 knockdown abolished the uric acid-induced increases of Kv1.5 proteins and channel currents. CONCLUSIONS: Intracellular uric acid could stabilize Kv1.5 proteins through phosphorylation of Akt and HSF1 leading to enhanced expression of Hsp70.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Canal de Potasio Kv1.5/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácido Úrico/farmacología , Animales , Línea Celular , Canal de Potasio Kv1.5/efectos de los fármacos , Ratones , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas , Transcripción Genética
8.
J Immunol ; 198(1): 156-169, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27872209

RESUMEN

Hematopoietic stem cells and their lymphoid progenitors are supported by the bone marrow (BM) microenvironmental niches composed of various stromal cells and Schwann cells and sympathetic nerve fibers. Although neural crest (NC) cells contribute to the development of all the three, their function in BM is not well understood. In this study, NC-derived cells were ablated with diphtheria toxin in double-transgenic mice expressing NC-specific Cre and Cre-driven diphtheria toxin receptor with yellow fluorescent protein reporter. We found that yellow fluorescent protein-expressing, NC-derived nonhematopoietic cells in BM expressed hematopoietic factors Cxcl12 and stem cell factor The ablation of NC-derived cells led to a significant decrease in B cell progenitors but not in hematopoietic stem cells or myeloid lineage cells in BM. Interestingly, plasma noradrenaline was markedly decreased in these mice. The i.p. administration of 6-hydroxydopamine, a known neurotoxin for noradrenergic neurons, led to a similar phenotype, whereas the administration of a noradrenaline precursor in NC-ablated mice partially rescued this phenotype. Additionally, the continuous administration of adrenergic receptor ß antagonists partially decreased the number of B cell progenitors while preserving B lymphopoiesis in vitro. Taken together, our results indicate that NC-derived cell depletion leads to abnormal B lymphopoiesis partially through decreased plasma noradrenaline, suggesting this as a novel mechanism regulated by molecules released by the sympathetic neurons.


Asunto(s)
Linfocitos B/citología , Linfopoyesis/fisiología , Cresta Neural/citología , Norepinefrina/sangre , Animales , Diferenciación Celular , Separación Celular , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Transgénicos , Cresta Neural/inmunología , Reacción en Cadena de la Polimerasa
9.
J Assist Reprod Genet ; 36(8): 1571-1577, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31267335

RESUMEN

PURPOSE: To investigate the stability of osmolality in non-humidified and humidified incubators for assisted reproductive technologies (ART). METHODS: Drops of three single-step culture media (media A, B, and C) were incubated for 5 or 6 days covered with four different mineral oils (oils A, B, C, and D) in non-humidified incubator A, non-humidified incubator B, or humidified incubator C to investigate the effects of incubator environment (humidification), drop volume, culture media, and mineral oil on the stability of osmolality in microdrops. RESULTS: A significant and linear increase was shown in the osmolality of 50-µL and 200-µL microdrops covered with mineral oil during 5 days incubation in non-humidified benchtop incubators. The maximum increase was 20 mOsm/kg, and the extent of the increase was affected by microdrop volume and possibly by the type of mineral oil used to cover the drops. In contrast, the osmolality of 50-µL and 200-µL microdrops did not change during 5 days incubation in a humidified benchtop incubator. CONCLUSIONS: Mineral oil alone may not adequately prevent gradual changes in the osmolality of low-volume microdrops during extended in vitro culture of human embryos in non-humidified incubators. As a result, the osmolality may increase to high enough levels to stress some human embryos and adversely affect clinical outcomes. We therefore recommend that the stability of osmolality should be given more consideration to ensure optimal culture conditions for ART.


Asunto(s)
Técnicas de Cultivo de Embriones/instrumentación , Embrión de Mamíferos/citología , Fertilización In Vitro/normas , Humedad/normas , Incubadoras/normas , Medios de Cultivo , Técnicas de Cultivo de Embriones/métodos , Técnicas de Cultivo de Embriones/normas , Desarrollo Embrionario , Femenino , Humanos , Aceite Mineral , Concentración Osmolar
10.
Eur J Immunol ; 47(9): 1477-1487, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28667750

RESUMEN

The pool of hematopoietic stem cells (HSCs) in the bone marrow is a mixture of resting, proliferating, and differentiating cells. Long-term repopulating HSCs (LT-HSC) are routinely enriched as Lin- Sca1+ c-Kit+ CD34- Flt3- CD150+ CD48- cells. The Flt3 ligand (Flt3L) and its receptor Flt3 are important regulators of HSC maintenance, expansion and differentiation. Using Flt3L-eGFP reporter mice, we show that endogenous Flt3L-eGFP-reporter RNA expression correlates with eGFP-protein expression. This Flt3L-eGFP-reporter expression distinguishes two LT-HSC populations with differences in gene expressions and reconstituting potential. Thus, Flt3L-eGFP-reporterlow cells are identified as predominantly resting HSCs with long-term repopulating capacities. In contrast, Flt3L-eGFP-reporterhigh cells are in majority proliferating HSCs with only short-term repopulating capacities. Flt3L-eGFP-reporterlow cells express hypoxia, autophagy-inducing, and the LT-HSC-associated genes HoxB5 and Fgd5, while Flt3L-eGFP-reporterhigh HSCs upregulate genes involved in HSC differentiation. Flt3L-eGFP-reporterlow cells develop to Flt3L-eGFP-reporterhigh cells in vitro, although Flt3L-eGFP-reporterhigh cells remain Flt3L-eGFP-reporterhigh . CD150+ Flt3L-eGFP-reporterlow cells express either endothelial protein C receptor (EPCR) or CD41, while Flt3L-eGFP-reporterhigh cells do express EPCR but not CD41. Thus, FACS-enrichment of Flt3/ Flt3L-eGFP-reporter negative, Lin- CD150+ CD48- EPCR+ CD41+ HSCs allows a further 5-fold enrichment of functional LT-HSCs.


Asunto(s)
Células de la Médula Ósea/fisiología , Células Madre Hematopoyéticas/fisiología , Proteínas de la Membrana/metabolismo , Animales , Autofagia/genética , Diferenciación Celular , Proliferación Celular , Autorrenovación de las Células , Células Cultivadas , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hipoxia/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo
12.
Eur J Immunol ; 45(4): 975-87, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25639669

RESUMEN

It is believed that memory CD8(+) T cells are maintained in secondary lymphoid tissues, peripheral tissues, and BM by homeostatic proliferation. Their survival has been shown to be dependent on IL-7, but it is unclear where they acquire it. Here we show that in murine BM, memory CD8(+) T cells individually colocalize with IL-7(+) reticular stromal cells. The T cells are resting in terms of global transcription and do not express markers of activation, for example, 4-1BB (CD137), IL-2, or IFN-γ, despite the expression of CD69 on about 30% of the cells. Ninety-five percent of the memory CD8(+) T cells in BM are in G0 phase of cell cycle and do not express Ki-67. Less than 1% is in S/M/G2 of cell cycle, according to propidium iodide staining. While previous publications have estimated the extent of proliferation of CD8(+) memory T cells on the basis of BrdU incorporation, we show here that BrdU itself induces proliferation of CD8(+) memory T cells. Taken together, the present results suggest that CD8(+) memory T cells are maintained as resting cells in the BM in dedicated niches with their survival conditional on IL-7 receptor signaling.


Asunto(s)
Células de la Médula Ósea/citología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Fase de Descanso del Ciclo Celular/inmunología , Células del Estroma/inmunología , Animales , Antígenos CD/biosíntesis , Antígenos de Diferenciación de Linfocitos T/biosíntesis , Células de la Médula Ósea/inmunología , Proliferación Celular , Interferón gamma/biosíntesis , Interleucina-2/biosíntesis , Interleucina-7/inmunología , Antígeno Ki-67/biosíntesis , Lectinas Tipo C/biosíntesis , Ratones , Ratones Endogámicos C57BL , Transcripción Genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/biosíntesis
13.
Clin Exp Rheumatol ; 33(4 Suppl 92): S91-3, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26457725

RESUMEN

In human and murine embryonic development, haematopoiesis and B-lymphopoiesis show stepwise differentiation from pluripotent haematopoietic stem cells and multipotent progenitors, over lineage-restricted lymphoid and myeloid progenitors to B-lineage committed precursors and finally differentiated pro/preB cells. This wave of differentiation is spatially and temporally organised by the surrounding, mostly non-haematopoietic cell niches. We review here recent developments and our current contributions on the research on blood cell development.


Asunto(s)
Hematopoyesis Extramedular , Células Madre Hematopoyéticas/fisiología , Hígado/embriología , Linfopoyesis , Células Madre Multipotentes/fisiología , Células Precursoras de Linfocitos B/fisiología , Nicho de Células Madre , Animales , Comunicación Celular , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Humanos , Transducción de Señal
14.
Stem Cells ; 31(12): 2800-12, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23666739

RESUMEN

The microenvironments, in which B lymphocytes develop in fetal liver, are largely still unknown. Among the nonhematopoietic cells, we have identified and FACS-separated two subpopulations, CD45(-) TER119(-) VCAM-1(+) cells that are either CD105(high) LYVE-1(high) or CD105(low) ALCAM(high) . Immunohistochemical analyses find three of four c-Kit(+) IL-7Rα(+) B220(low) CD19(-) SLC(-) B progenitors in contact with vascular endothelial-type LYVE-1(high) cells on embryonic day 13.5. One day later c-Kit(+) IL-7Rα(+) cells develop to CD19(- and +) , SLC-expressing, DHJH-rearranged pre/pro and pro/preB-I cells. Less than 10% are still in contact with LYVE-1(high) cells, but half of them are now in contact with mesenchymally derived ALCAM(high) liver cells. All of these ALCAM(high) cells, but not the LYVE-1(high) cells produce IL-7 and CXCL12, while both produce CXCL10. Progenitors and pro/preB-I cells are chemoattracted in vitro toward CXCL10 and 12, suggesting that lymphoid progenitors with Ig gene loci in germline configuration enter the developing fetal liver at E13.5 from vascular endothelium, attracted by CXCL10, and then migrate within a day to an ALCAM(high) liver cell microenvironment, differentiating to DHJH-rearranging, surrogate light chain-expressing pre/proB and pro/preB-I cells, attracted by CXCL10 and 12. Between E15.5 and E16.5 preB-I cells expand 10-fold in continued contact with ALCAM(high) cells and begin VH- to DHJH-rearrangements in further differentiated c-Kit(-) IL-7Rα(-) preBII cells. STEM Cells 2013;31:2800-2812.


Asunto(s)
Linfocitos B/citología , Hígado/citología , Hígado/embriología , Células Precursoras de Linfocitos B/citología , Animales , Linfocitos B/metabolismo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Microambiente Celular/fisiología , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
15.
J Arrhythm ; 39(4): 664-668, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560272

RESUMEN

Background: Cardiomyocytes derived from human iPS cells (hiPSCs) include cells showing SAN- and non-SAN-type spontaneous APs. Objectives: To examine whether the deep learning technology could identify hiPSC-derived SAN-like cells showing SAN-type-APs by their shape. Methods: We acquired phase-contrast images for hiPSC-derived SHOX2/HCN4 double-positive SAN-like and non-SAN-like cells and made a VGG16-based CNN model to classify an input image as SAN-like or non-SAN-like cell, compared to human discriminability. Results: All parameter values such as accuracy, recall, specificity, and precision obtained from the trained CNN model were higher than those of human classification. Conclusions: Deep learning technology could identify hiPSC-derived SAN-like cells with considerable accuracy.

16.
Hypertens Res ; 46(10): 2368-2377, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37592041

RESUMEN

Soluble uric acid (UA) absorbed by cells through UA transporters (UATs) accumulates intracellularly, activates the NLRP3 inflammasome and thereby increases IL-1ß secretion. ABCG2 transporter excludes intracellular UA. However, it remains unknown whether ABCG2 inhibition leads to intracellular accumulation of UA and increases IL-1ß production. In this study, we examined whether genetic and pharmacological inhibition of ABCG2 could increase IL-1ß production in mouse macrophage-like J774.1 cells especially under hyperuricemic conditions. We determined mRNA and protein levels of pro-IL-1ß, mature IL-1ß, caspase-1 and several UATs in culture supernatants and lysates of J774.1 cells with or without soluble UA pretreatment. Knockdown experiments using an shRNA against ABCG2 and pharmacological experiments with an ABCG2 inhibitor were conducted. Extracellularly applied soluble UA increased protein levels of pro-IL-1ß, mature IL-1ß and caspase-1 in the culture supernatant from lipopolysaccharide (LPS)-primed and monosodium urate crystal (MSU)-stimulated J774.1 cells. J774.1 cells expressed UATs of ABCG2, GLUT9 and MRP4, and shRNA knockdown of ABCG2 increased protein levels of pro-IL-1ß and mature IL-1ß in the culture supernatant. Soluble UA increased mRNA and protein levels of ABCG2 in J774.1 cells without either LPS or MSU treatment. An ABCG2 inhibitor, febuxostat, but not a urate reabsorption inhibitor, dotinurad, enhanced IL-1ß production in cells pretreated with soluble UA. In conclusion, genetic and pharmacological inhibition of ABCG2 enhanced IL-1ß production especially under hyperuricemic conditions by increasing intracellularly accumulated soluble UA that activates the NLRP3 inflammasome and pro-IL-1ß transcription in macrophage-like J774.1 cells.


Asunto(s)
Inflamasomas , Ácido Úrico , Ratones , Animales , Ácido Úrico/farmacología , Inflamasomas/metabolismo , Inflamasomas/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , ARN Interferente Pequeño/farmacología , ARN Mensajero/farmacología , Caspasas/farmacología
17.
Regen Ther ; 21: 239-249, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36092505

RESUMEN

Introduction: Dysfunction of the sinoatrial node (SAN) cells causes arrhythmias, and many patients require artificial cardiac pacemaker implantation. However, the mechanism of impaired SAN automaticity remains unknown, and the generation of human SAN cells in vitro may provide a platform for understanding the pathogenesis of SAN dysfunction. The short stature homeobox 2 (SHOX2) and hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) genes are specifically expressed in SAN cells and are important for SAN development and automaticity. In this study, we aimed to purify and characterize human SAN-like cells in vitro, using HCN4 and SHOX2 as SAN markers. Methods: We developed an HCN4-EGFP/SHOX2-mCherry dual reporter cell line derived from human induced pluripotent stem cells (hiPSCs), and HCN4 and SHOX2 gene expressions were visualized using the fluorescent proteins EGFP and mCherry, respectively. The dual reporter cell line was established using an HCN4-EGFP bacterial artificial chromosome-based semi-knock-in system and a CRISPR-Cas9-dependent knock-in system with a SHOX2-mCherry targeting vector. Flow cytometry, RT-PCR, and whole-cell patch-clamp analyses were performed to identify SAN-like cells. Results: Flow cytometry analysis and cell sorting isolated HCN4-EGFP single-positive (HCN4+/SHOX2-) and HCN4-EGFP/SHOX2-mCherry double-positive (HCN4+/SHOX2+) cells. RT-PCR analyses showed that SAN-related genes were enriched within the HCN4+/SHOX2+ cells. Further, electrophysiological analyses showed that approximately 70% of the HCN4+/SHOX2+ cells exhibited SAN-like electrophysiological characteristics, as defined by the action potential parameters of the maximum upstroke velocity and action potential duration. Conclusions: The HCN4-EGFP/SHOX2-mCherry dual reporter hiPSC system developed in this study enabled the enrichment of SAN-like cells within a mixed HCN4+/SHOX2+ population of differentiating cardiac cells. This novel cell line is useful for the further enrichment of human SAN-like cells. It may contribute to regenerative medicine, for example, biological pacemakers, as well as testing for cardiotoxic and chronotropic actions of novel drug candidates.

18.
Hypertens Res ; 45(2): 283-291, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34853408

RESUMEN

Cell-based therapy using adipose-derived stem cells (ADSCs) has emerged as a novel therapeutic approach to treat heart failure after myocardial infarction (MI). The purpose of this study was to determine whether inhibition of α1-adrenergic receptors (α1-ARs) in ADSCs attenuates ADSC sheet-induced improvements in cardiac functions and inhibition of remodeling after MI. ADSCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ADSCs, we determined the mRNA levels of vascular endothelial growth factor (VEGF)-A and α1-AR under normoxia or hypoxia and the effects of norepinephrine and an α1-blocker, doxazosin, on the mRNA levels of angiogenic factors. Hypoxia increased α1-AR and VEGF mRNA levels in ADSCs. Norepinephrine further increased VEGF mRNA expression under hypoxia; this effect was abolished by doxazosin. Tube formation of human umbilical vein endothelial cells was promoted by conditioned media of ADSCs treated with the α1 stimulant phenylephrine under hypoxia but not by those of ADSCs pretreated with phenylephrine plus doxazosin. In in vivo studies using rats with MI, transplanted ADSC sheets improved cardiac functions, facilitated neovascularization, and suppressed fibrosis after MI. These effects were abolished by doxazosin treatment. Pathway analysis from RNA sequencing data predicted significant upregulation of α1-AR mRNA expression in transplanted ADSC sheets and the involvement of α1-ARs in angiogenesis through VEGF. In conclusion, doxazosin abolished the beneficial effects of ADSC sheets on rat MI hearts as well as the enhancing effect of norepinephrine on VEGF expression in ADSCs, indicating that ADSC sheets promote angiogenesis and prevent cardiac dysfunction and remodeling after MI via their α1-ARs.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Receptores Adrenérgicos alfa 1 , Animales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Infarto del Miocardio/complicaciones , Neovascularización Fisiológica , Ratas , Ratas Endogámicas Lew , Células Madre , Factor A de Crecimiento Endotelial Vascular
19.
J Biomed Biotechnol ; 2011: 895086, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22187531

RESUMEN

We review here our experiences with the in vitro reprogramming of somatic cells to induced pluripotent stem cells (iPSC) and subsequent in vitro development of hematopoietic cells from these iPSC and from embryonic stem cells (ESC). While, in principle, the in vitro reprogramming and subsequent differentiation can generate hematopoietic cell from any somatic cells, it is evident that many of the steps in this process need to be significantly improved before it can be applied to human cells and used in clinical settings of hematopoietic stem cell (HSC) transplantations.


Asunto(s)
Reprogramación Celular , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Diferenciación Celular/fisiología , Humanos , Ratones , Modelos Biológicos
20.
Hypertens Res ; 43(5): 380-388, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31942044

RESUMEN

Myocardial ischemia/reperfusion injury worsens in the absence of nitric oxide synthase (NOS). Cilnidipine, a Ca2+ channel blocker, has been reported to activate endothelial NOS (eNOS) and increases nitric oxide (NO) in vascular endothelial cells. We examined whether pretreatment with cilnidipine could attenuate cardiac cell deaths including apoptosis caused by hypoxia/reoxygenation (H/R) injury. HL-1 mouse atrial myocytes as well as H9c2 rat ventricular cells were exposed to H/R, and cell viability was evaluated by an autoanalyzer and flow cytometry; eNOS expression, NO production, and electrophysiological properties were also evaluated by western blotting, colorimetry, and patch clamping, respectively, in the absence and presence of cilnidipine. Cilnidipine enhanced phosphorylation of eNOS and NO production in a concentration-dependent manner, which was abolished by siRNAs against eNOS or an Hsp90 inhibitor, geldanamycin. Pretreatment with cilnidipine attenuated cell deaths including apoptosis during H/R; this effect was reproduced by an NO donor and a xanthine oxidase inhibitor. The NOS inhibitor L-NAME abolished the protective action of cilnidipine. Pretreatment with cilnidipine also attenuated H9c2 cell death during H/R. Additional cilnidipine treatment during H/R did not significantly enhance its protective action. There was no significant difference in the protective effect of cilnidipine under normal and high Ca2+ conditions. Action potential duration (APD) of HL-1 cells was shortened by cilnidipine, with this shortening augmented after H/R. L-NAME attenuated the APD shortening caused by cilnidipine. These findings indicate that cilnidipine enhances NO production, shortens APD in part by L-type Ca2+ channel block, and thereby prevents HL-1 cell deaths during H/R.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Dihidropiridinas/farmacología , Hipoxia/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Óxido Nítrico/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Ratones , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación/efectos de los fármacos , ARN Interferente Pequeño , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA