Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(33): 16186-16191, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31350347

RESUMEN

Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5d-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO3 We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5d transition-metal oxide thin films can be an ideal building block for low-power spintronics.

2.
Nat Mater ; 17(3): 231-236, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29403056

RESUMEN

The discovery of a two-dimensional electron gas (2DEG) at the LaAlO3/SrTiO3 interface 1 has resulted in the observation of many properties2-5 not present in conventional semiconductor heterostructures, and so become a focal point for device applications6-8. Its counterpart, the two-dimensional hole gas (2DHG), is expected to complement the 2DEG. However, although the 2DEG has been widely observed 9 , the 2DHG has proved elusive. Herein we demonstrate a highly mobile 2DHG in epitaxially grown SrTiO3/LaAlO3/SrTiO3 heterostructures. Using electrical transport measurements and in-line electron holography, we provide direct evidence of a 2DHG that coexists with a 2DEG at complementary heterointerfaces in the same structure. First-principles calculations, coherent Bragg rod analysis and depth-resolved cathodoluminescence spectroscopy consistently support our finding that to eliminate ionic point defects is key to realizing a 2DHG. The coexistence of a 2DEG and a 2DHG in a single oxide heterostructure provides a platform for the exciting physics of confined electron-hole systems and for developing applications.

3.
Phys Rev Lett ; 116(18): 187201, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27203341

RESUMEN

The relatively low magnetocrystalline anisotropy (MCA) in strongly correlated manganites (La,Sr)MnO_{3} has been a major hurdle for implementing them in spintronic applications. Here we report an unusual, giant enhancement of in-plane MCA in 6 nm La_{0.67}Sr_{0.33}MnO_{3} (LSMO) films grown on (001) SrTiO_{3} substrates when the top 2 nm is patterned into periodic stripes of 100 or 200 nm width. Planar Hall effect measurements reveal an emergent uniaxial anisotropy superimposed on one of the original biaxial easy axes for unpatterned LSMO along ⟨110⟩ directions, with a 50-fold enhanced anisotropy energy density of 5.6×10^{6} erg/cm^{3} within the nanostripes, comparable to the value for cobalt. The magnitude and direction of the uniaxial anisotropy exclude shape anisotropy and the step edge effect as its origin. High resolution transmission electron microscopy studies reveal a nonequilibrium strain distribution and drastic suppression in the c-axis lattice constant within the nanostructures, which is the driving mechanism for the enhanced uniaxial MCA, as suggested by first-principles density functional calculations.

4.
Nano Lett ; 15(5): 3547-51, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25860855

RESUMEN

In recent years, complex-oxide heterostructures and their interfaces have become the focus of significant research activity, primarily driven by the discovery of emerging states and functionalities that open up opportunities for the development of new oxide-based nanoelectronic devices. The highly conductive state at the interface between insulators LaAlO3 and SrTiO3 is a prime example of such emergent functionality, with potential application in high electron density transistors. In this report, we demonstrate a new paradigm for voltage-free tuning of LaAlO3/SrTiO3 (LAO/STO) interface conductivity, which involves the mechanical gating of interface conductance through stress exerted by the tip of a scanning probe microscope. The mechanical control of channel conductivity and the long retention time of the induced resistance states enable transistor functionality with zero gate voltage.

5.
Nanotechnology ; 26(30): 305202, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26150406

RESUMEN

We report the effect of compressive strain on the tunneling electroresistance (TER) effect in BaTiO3/SrRuO3 (BTO/SRO) heterostructures. We find that epitaxial strain imposed by the mismatch of NdGaO3 and SrTiO3 lattice parameters with the BTO and SRO layers improves ferroelectric polarization of BTO and concurrently promotes the metallicity of the SRO films. While the enhanced polarization is beneficial for the TER magnitude, the reduced asymmetry in the tunneling barrier due to the shortened screening length of SRO is detrimental for the effect. Thus, a combined effect of strain on the polarization of the ferroelectric barrier and the screening properties of the electrodes needs to be taken into account when considering and predicting the TER effect in ferroelectric tunnel junctions.

6.
Nat Mater ; 12(5): 397-402, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23416728

RESUMEN

The range of recently discovered phenomena in complex oxide heterostructures, made possible owing to advances in fabrication techniques, promise new functionalities and device concepts. One issue that has received attention is the bistable electrical modulation of conductivity in ferroelectric tunnel junctions (FTJs) in response to a ferroelectric polarization of the tunnelling barrier, a phenomenon known as the tunnelling electroresistance (TER) effect. Ferroelectric tunnel junctions with ferromagnetic electrodes allow ferroelectric control of the tunnelling spin polarization through the magnetoelectric coupling at the ferromagnet/ferroelectric interface. Here we demonstrate a significant enhancement of TER due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Ferroelectric tunnel junctions consisting of BaTiO3 tunnelling barriers and La(0.7)Sr(0.3)MnO3 electrodes exhibit a TER enhanced by up to ~10,000% by a nanometre-thick La(0.5)Ca(0.5)MnO3 interlayer inserted at one of the interfaces. The observed phenomenon originates from the metal-to-insulator phase transition in La(0.5)Ca(0.5)MnO3, driven by the modulation of carrier density through ferroelectric polarization switching. Electrical, ferroelectric and magnetoresistive measurements combined with first-principles calculations provide evidence for a magnetoelectric origin of the enhanced TER, and indicate the presence of defect-mediated conduction in the FTJs. The effect is robust and may serve as a viable route for electronic and spintronic applications.

7.
Nano Lett ; 12(11): 5697-702, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23039785

RESUMEN

Strong interest in resistive switching phenomena is driven by a possibility to develop electronic devices with novel functional properties not available in conventional systems. Bistable resistive devices are characterized by two resistance states that can be switched by an external voltage. Recently, memristors-electric circuit elements with continuously tunable resistive behavior-have emerged as a new paradigm for nonvolatile memories and adaptive electronic circuit elements. Employment of memristors can radically enhance the computational power and energy efficiency of electronic systems. Most of the existing memristor prototypes involve transition metal oxide resistive layers where conductive filaments formation and/or the interface contact resistance control the memristive behavior. In this paper, we demonstrate a new type of memristor that is based on a ferroelectric tunnel junction, where the tunneling conductance can be tuned in an analogous manner by several orders of magnitude by both the amplitude and the duration of the applied voltage. The ferroelectric tunnel memristors exhibit a reversible hysteretic nonvolatile resistive switching with a resistance ratio of up to 10(5) % at room temperature. The observed memristive behavior is attributed to the field-induced charge redistribution at the ferroelectric/electrode interface, resulting in the modulation of the interface barrier height.

8.
Nano Lett ; 12(12): 6289-92, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23181389

RESUMEN

Recent advances in atomic-precision processing of oxide ferroelectrics-materials with a stable polarization that can be switched by an external electric field-have generated considerable interest due to rich physics associated with their fundamental properties and high potential for application in devices with enhanced functionality. One of the particularly promising phenomena is the tunneling electroresistance (TER) effect-polarization-dependent bistable resistance behavior of ferroelectric tunnel junctions (FTJ). Conventionally, the application of an electric field above the coercive field of the ferroelectric barrier is required to observe this phenomenon. Here, we report a mechanically induced TER effect in ultrathin ferroelectric films of BaTiO(3) facilitated by a large strain gradient induced by a tip of a scanning probe microscope (SPM). The obtained results represent a new paradigm for voltage-free control of electronic properties of nanoscale ferroelectrics and, more generally, complex oxide materials.

9.
Nano Lett ; 12(4): 1765-71, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22400486

RESUMEN

Demonstration of a tunable conductivity of the LaAlO(3)/SrTiO(3) interfaces drew significant attention to the development of oxide electronic structures where electronic confinement can be reduced to the nanometer range. While the mechanisms for the conductivity modulation are quite different and include metal-insulator phase transition and surface charge writing, generally it is implied that this effect is a result of electrical modification of the LaAlO(3) surface (either due to electrochemical dissociation of surface adsorbates or free charge deposition) leading to the change in the two-dimensional electron gas (2DEG) density at the LaAlO(3)/SrTiO(3) (LAO/STO) interface. In this paper, using piezoresponse force microscopy we demonstrate a switchable electromechanical response of the LAO overlayer, which we attribute to the motion of oxygen vacancies through the LAO layer thickness. These electrically induced reversible changes in bulk stoichiometry of the LAO layer are a signature of a possible additional mechanism for nanoscale oxide 2DEG control on LAO/STO interfaces.

10.
Phys Rev Lett ; 107(16): 166601, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22107410

RESUMEN

First-principles density functional calculations demonstrate that a spin-polarized two-dimensional conducting state can be realized at the interface between two nonmagnetic band insulators. The (001) surface of the diamagnetic insulator FeS(2) (pyrite) supports a localized surface state deriving from Fe d orbitals near the conduction band minimum. The deposition of a few unit cells of the polar perovskite oxide LaAlO(3) leads to electron transfer into these surface bands, thereby creating a conducting interface. The occupation of these narrow bands leads to an exchange splitting between the spin subbands, yielding a highly spin-polarized conducting state distinct from the rest of the nonmagnetic, insulating bulk. Such an interface presents intriguing possibilities for spintronics applications.

11.
Phys Rev Lett ; 106(15): 157203, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21568608

RESUMEN

A giant tunneling electroresistance effect may be achieved in a ferroelectric tunnel junction by exploiting the magnetoelectric effect at the interface between the ferroelectric barrier and a magnetic La(1-x)Sr(x)MnO3 electrode. Using first-principles density-functional theory we demonstrate that a few magnetic monolayers of La(1-x)Sr(x)MnO3 near the interface act, in response to ferroelectric polarization reversal, as an atomic-scale spin valve by filtering spin-dependent current. This produces more than an order of magnitude change in conductance, and thus constitutes a giant resistive switching effect.

12.
Nat Commun ; 12(1): 6784, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811372

RESUMEN

The control of the in-plane domain evolution in ferroelectric thin films is not only critical to understanding ferroelectric phenomena but also to enabling functional device fabrication. However, in-plane polarized ferroelectric thin films typically exhibit complicated multi-domain states, not desirable for optoelectronic device performance. Here we report a strategy combining interfacial symmetry engineering and anisotropic strain to design single-domain, in-plane polarized ferroelectric BaTiO3 thin films. Theoretical calculations predict the key role of the BaTiO3/PrScO3 [Formula: see text] substrate interfacial environment, where anisotropic strain, monoclinic distortions, and interfacial electrostatic potential stabilize a single-variant spontaneous polarization. A combination of scanning transmission electron microscopy, piezoresponse force microscopy, ferroelectric hysteresis loop measurements, and second harmonic generation measurements directly reveals the stabilization of the in-plane quasi-single-domain polarization state. This work offers design principles for engineering in-plane domains of ferroelectric oxide thin films, which is a prerequisite for high performance optoelectronic devices.

13.
Phys Rev Lett ; 105(8): 087204, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20868130

RESUMEN

Epitaxial oxide interfaces with broken translational symmetry have emerged as a central paradigm behind the novel behaviors of oxide superlattices. Here, we use scanning transmission electron microscopy to demonstrate a direct, quantitative unit-cell-by-unit-cell mapping of lattice parameters and oxygen octahedral rotations across the BiFeO3-La0.7 Sr0.3 MnO3 interface to elucidate how the change of crystal symmetry is accommodated. Combined with low-loss electron energy loss spectroscopy imaging, we demonstrate a mesoscopic antiferrodistortive phase transition near the interface in BiFeO3 and elucidate associated changes in electronic properties in a thin layer directly adjacent to the interface.

14.
Nano Lett ; 9(10): 3539-43, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19697939

RESUMEN

Using a set of scanning probe microscopy techniques, we demonstrate the reproducible tunneling electroresistance effect on nanometer-thick epitaxial BaTiO(3) single-crystalline thin films on SrRuO(3) bottom electrodes. Correlation between ferroelectric and electronic transport properties is established by direct nanoscale visualization and control of polarization and tunneling current. The obtained results show a change in resistance by about 2 orders of magnitude upon polarization reversal on a lateral scale of 20 nm at room temperature. These results are promising for employing ferroelectric tunnel junctions in nonvolatile memory and logic devices.

15.
Nat Commun ; 11(1): 4671, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938910

RESUMEN

The interconversion of charge and spin currents via spin-Hall effect is essential for spintronics. Energy-efficient and deterministic switching of magnetization can be achieved when spin polarizations of these spin currents are collinear with the magnetization. However, symmetry conditions generally restrict spin polarizations to be orthogonal to both the charge and spin flows. Spin polarizations can deviate from such direction in nonmagnetic materials only when the crystalline symmetry is reduced. Here, we show control of the spin polarization direction by using a non-collinear antiferromagnet Mn3GaN, in which the triangular spin structure creates a low magnetic symmetry while maintaining a high crystalline symmetry. We demonstrate that epitaxial Mn3GaN/permalloy heterostructures can generate unconventional spin-orbit torques at room temperature corresponding to out-of-plane and Dresselhaus-like spin polarizations which are forbidden in any sample with two-fold rotational symmetry. Our results demonstrate an approach based on spin-structure design for controlling spin-orbit torque, enabling high-efficient antiferromagnetic spintronics.

16.
Nat Mater ; 12(7): 602-4, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23685862
17.
Nat Commun ; 9(1): 3319, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127419

RESUMEN

Out-of-plane ferroelectricity with a high transition temperature in nanometer-scale films is required to miniaturize electronic devices. Direct visualization of stable ferroelectric polarization and its switching behavior in atomically thick films is critical for achieving this goal. Here, ferroelectric order at room temperature in the two-dimensional limit is demonstrated in tetragonal BiFeO3 ultrathin films. Using aberration-corrected scanning transmission electron microscopy, we directly observed robust out-of-plane spontaneous polarization in one-unit-cell-thick BiFeO3 films. High-resolution piezoresponse force microscopy measurements show that the polarization is stable and switchable, whereas a tunneling electroresistance effect of up to 370% is achieved in BiFeO3 films. Based on first-principles calculations and Kelvin probe force microscopy measurements, we explain the mechanism of polarization stabilization by the ionic displacements in oxide electrode and the surface charges. Our results indicate that critical thickness for ferroelectricity in the BiFeO3 film is virtually absent, making it a promising candidate for high-density nonvolatile memories.

18.
Science ; 362(6418): 1037-1040, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30498123

RESUMEN

The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.

19.
Nat Commun ; 9(1): 1897, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29765044

RESUMEN

Complex-oxide materials exhibit physical properties that involve the interplay of charge and spin degrees of freedom. However, an ambipolar oxide that is able to exhibit both electron-doped and hole-doped ferromagnetism in the same material has proved elusive. Here we report ambipolar ferromagnetism in LaMnO3, with electron-hole asymmetry of the ferromagnetic order. Starting from an undoped atomically thin LaMnO3 film, we electrostatically dope the material with electrons or holes according to the polarity of a voltage applied across an ionic liquid gate. Magnetotransport characterization reveals that an increase of either electron-doping or hole-doping induced ferromagnetic order in this antiferromagnetic compound, and leads to an insulator-to-metal transition with colossal magnetoresistance showing electron-hole asymmetry. These findings are supported by density functional theory calculations, showing that strengthening of the inter-plane ferromagnetic exchange interaction is the origin of the ambipolar ferromagnetism. The result raises the prospect of exploiting ambipolar magnetic functionality in strongly correlated electron systems.

20.
J Phys Condens Matter ; 19(31): 315220, 2007 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-21694120

RESUMEN

The electronic structures and magnetic properties of many rare-earth monopnictides are reviewed in this article. Possible candidate materials for spintronics devices from the rare-earth monopnictide family, i.e. high polarization (nominally half-metallic) ferromagnets and antiferromagnets, are identified. We attempt to provide a unified picture of the electronic properties of these strongly correlated systems. The relative merits of several ab initio theoretical methods, useful in the study of the rare-earth monopnictides, are discussed. We present our current understanding of the possible half-metallicity, semiconductor-metal transitions, and magnetic orderings in the rare-earth monopnictides. Finally, we propose some potential strategies to improve the magnetic and electronic properties of these candidate materials for spintronics devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA