Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Macromol Rapid Commun ; 43(8): e2100854, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35254691

RESUMEN

Photodetectors based on reduced graphene oxide (rGO) have attracted much attention owing to their simple and low-cost fabrication process. However, the aggregation and defects of rGO flakes still limit the performance of rGO photodetectors. Controlling the composition of rGO has become a vital factor for its prospective applications. For example, the interconnection between rGO and polymers for modified morphologies of rGO films leads to an enhanced performance of devices. In this work, a practical approach to engineer surface uniformity and enhance the performance of a photodetector by modifying the rGO film with hydrophilic polymers poly(vinyl alcohol) (PVA) is reported. Compared with the rGO photodetector, the on/off ratio for the PVA/rGO photodetector shows 3.5 times improvement, and the detectivity shows 53% enhancement even when the photodetector is operated at a low bias of 0.3 V. This study provides an effective route to realize PVA/rGO photodetectors with a low-power operation which shows promising opportunities for the future development of green systems.

2.
Opt Express ; 29(10): 14208-14217, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985145

RESUMEN

The emerged demand for high-performance systems promotes the development of two-dimensional (2D) graphene-based photodetectors. However, these graphene-based photodetectors are usually fabricated by an expensive photolithography and complicated transferred process. Here, a semi-transparent reduced graphene oxide (rGO) photodetector on a polyethylene terephthalate (PET) substrate with ultra-low power operation by simple processes is developed. The photodetector has achieved a transmittance about 60%, a superior responsivity of 375 mA/W and a high detectivity of 1012 Jones at a bias of -1.5 V. Even the photodetector is worked at zero bias, the photodetector exhibits a superior on/off ratio of 12. Moreover, the photoresponse of such photodetector displays little reduction after hundred times bending, revealing that the photodetector is reliable and robust. The proposed fabrication strategy of the photodetector will be beneficial to the integration of semi-transparent and low-power wearable devices in the future.

3.
Nano Lett ; 16(1): 309-13, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26676025

RESUMEN

By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm(2) and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultrahigh efficiency photovoltaic cells in the future.

4.
Opt Express ; 24(16): 17910-5, 2016 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-27505758

RESUMEN

The ITO-free inverted SMPV1:PC71BM solar cells with an Al doped ZnO (AZO) transparent electrodes are fabricated. The AZO thin film prepared by pulsed laser deposition (PLD) technique exhibits high transmission (>85%) and low sheet resistance (~30 Ω/sq) and the power conversion efficiency (PCE) of devices based on AZO electrode can reach around 4%. To further enhance the light harvesting of the absorption layer of solar cells, ZnO nanorods interlayer is grown on the AZO layer before the deposition the active layer. The absorption spectrums of devices under various conditions are also simulated by RCWA method to identify the optical saturation length of the ZnO nanorods. The PCE of ITO-free inverted small molecule solar cell improved with ZnO nanorods can reach 6.6%.

5.
Int J Mol Sci ; 16(9): 22711-34, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26393585

RESUMEN

This study aims to explore the effects and mechanisms of hepcidin, a potential antimicrobial peptide from Tilapia, and epirubicin (Epi), an antineoplastic agent, on the generation of reactive oxygen species (ROS) and link the ROS levels to the reversal mechanisms of multidrug resistance (MDR) by epirubicin and hepcidin in human squamous cell carcinoma SCC15 and human embryonal carcinoma NT2D1 cells. The cells, pretreated with hepcidin, epirubicin, or a combination of these compounds in PEGylated liposomes, were used to validate the molecular mechanisms involved in inhibiting efflux transporters and inducing apoptosis as evaluated by cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of this combination. We found that hepcidin significantly enhanced the cytotoxicity of epirubicin in liposomes. The co-incubation of epirubicin with hepcidin in liposomes intensified the ROS production, including hydrogen peroxide and superoxide free radicals. Hepcidin significantly increased epirubicin intracellular uptake into NT2D1 and SCC15 cells, as supported by the diminished mRNA expressions of MDR1, MDR-associated protein (MRP) 1, and MRP2. Hepcidin and/or epirubicin in liposomes triggered apoptosis, as verified by the reduced mitochondrial membrane potential, increased sub-G1 phase of cell cycle, incremental populations of apoptosis using annexin V/PI assay, and chromatin condensation. As far as we know, this is the first example showing that PEGylated liposomal TH1-5 and epirubicin gives rise to cell death in human squamous carcinoma and testicular embryonic carcinoma cells through the reduced epirubicin efflux via ROS-mediated suppression of P-gp and MRPs and concomitant initiation of mitochondrial apoptosis pathway. Hence, hepcidin in PEGylated liposomes may function as an adjuvant to anticancer drugs, thus demonstrating a novel strategy for reversing MDR.


Asunto(s)
Antiinfecciosos/farmacología , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Epirrubicina/farmacología , Hepcidinas/farmacología , Neoplasias Testiculares/tratamiento farmacológico , Animales , Antiinfecciosos/administración & dosificación , Antiinfecciosos/farmacocinética , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Epirrubicina/administración & dosificación , Epirrubicina/farmacocinética , Hepcidinas/administración & dosificación , Hepcidinas/farmacocinética , Humanos , Liposomas , Masculino , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Testiculares/metabolismo , Tilapia
6.
Bioengineering (Basel) ; 11(9)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39329619

RESUMEN

An apical lesion is caused by bacteria invading the tooth apex through caries. Periodontal disease is caused by plaque accumulation. Peri-endo combined lesions include both diseases and significantly affect dental prognosis. The lack of clear symptoms in the early stages of onset makes diagnosis challenging, and delayed treatment can lead to the spread of symptoms. Early infection detection is crucial for preventing complications. PAs used as the database were provided by Chang Gung Memorial Medical Center, Taoyuan, Taiwan, with permission from the Institutional Review Board (IRB): 02002030B0. The tooth apex image enhancement method is a new technology in PA detection. This image enhancement method is used with convolutional neural networks (CNN) to classify apical lesions, peri-endo combined lesions, and asymptomatic cases, and to compare with You Only Look Once-v8-Oriented Bounding Box (YOLOv8-OBB) disease detection results. The contributions lie in the utilization of database augmentation and adaptive histogram equalization on individual tooth images, achieving the highest comprehensive validation accuracy of 95.23% with the ConvNextv2 model. Furthermore, the CNN outperformed YOLOv8 in identifying apical lesions, achieving an F1-Score of 92.45%. For the classification of peri-endo combined lesions, CNN attained the highest F1-Score of 96.49%, whereas YOLOv8 scored 88.49%.

7.
Sci Rep ; 12(1): 1823, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110664

RESUMEN

Thin Copper (Cu) films (15 nm) are deposited on different 2D material surfaces through e-beam deposition. With the assist of van der Waals epitaxy growth mode on 2D material surfaces, preferential planar growth is observed for Cu films on both MoS2 and WSe2 surfaces at room temperature, which will induce a polycrystalline and continuous Cu film formation. Relative low resistivity values 6.07 (MoS2) and 6.66 (WSe2) µΩ-cm are observed for the thin Cu films. At higher growth temperature 200 °C, Cu diffusion into the MoS2 layers is observed while the non-sulfur 2D material WSe2 can prevent Cu diffusion at the same growth temperature. By further increasing the deposition rates, a record-low resistivity value 4.62 µΩ-cm for thin Cu films is observed for the sample grown on the WSe2 surface. The low resistivity values and the continuous Cu films suggest a good wettability of Cu films on 2D material surfaces. The thin body nature, the capability to prevent Cu diffusion and the unique van der Waals epitaxy growth mode of 2D materials will make non-sulfur 2D materials such as WSe2 a promising candidate to replace the liner/barrier stack in interconnects with reducing linewidths.

8.
ACS Nano ; 15(7): 11126-11136, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34137585

RESUMEN

Optofluidic lasers are emerging building blocks with immense potential in the development of miniaturized light sources, integrated photonics, and sensors. The capability of on-demand lasing output with programmable and continuous wavelength tunability over a broad spectral range enables key functionalities in wavelength-division multiplexing and manipulation of light-matter interactions. However, the ability to control multicolor lasing characteristics within a small mode volume with high reconfigurability remains challenging. The color gamut is also restricted by the number of dyes and emission wavelength of existing materials. In this study, we introduce a fully programmable multicolor laser by encapsulating organic-dye-doped cholesteric liquid crystal microdroplet lasers in an optofluidic fiber. A mechanism for tuning laser emission wavelengths was proposed by manipulating the topologically induced nanoshell structures in microdroplets with different chiral dopant concentrations. Precision control of distinctive lasing wavelengths and colors covering the entire visible spectra was achieved, including monochromatic lasing, dual-color lasing, tri-color lasing, and white colored lasing with tunable color temperatures. Our findings revealed a CIE color map with 145% more perceptible colors than the standard RGB space, shedding light on the development of programmable lasers, multiplexed encoding, and biomedical detection.

9.
ACS Nano ; 15(5): 8965-8975, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33988971

RESUMEN

Chiral light-matter interactions have emerged as a promising area in biophysics and quantum optics. Great progress in enhancing chiral light-matter interactions have been investigated through passive resonators or spontaneous emission. Nevertheless, the interaction between chiral biomolecules and stimulated emission remains unexplored. Here we introduce the concept of a biological chiral laser by amplifying chiral light-matter interactions in an active resonator through stimulated emission process. Green fluorescent proteins or chiral biomolecules encapsulated in Fabry-Perot microcavity served as the gain material while excited by either left-handed or right-handed circularly polarized pump laser. Owing to the nonlinear pump energy dependence of stimulated emission, significant enhancement of chiral light-matter interactions was demonstrated. Detailed experiments and theory revealed that a lasing dissymmetry factor is determined by molecular absorption dissymmetry factor at its excitation wavelength. Finally, chirality transfer was investigated under a stimulated emission process through resonance energy transfer. Our findings elucidate the mechanism of stimulated chiral light-matter interactions, providing better understanding of light-matter interaction in biophysics, chiral sensing, and quantum biophotonics.


Asunto(s)
Rayos Láser , Óptica y Fotónica , Transferencia de Energía
10.
Adv Sci (Weinh) ; 7(11): 1903707, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32537412

RESUMEN

Bioenergy from photosynthetic living organisms is a potential solution for energy-harvesting and bioelectricity-generation issues. With the emerging interest in biophotovoltaics, extracting electricity from photosynthetic organisms remains challenging because of the low electron-transition rate and photon collection efficiency due to membrane shielding. In this study, the concept of "photosynthetic resonator" to amplify biological nanoelectricity through the confinement of living microalgae (Chlorella sp.) in an optical micro/nanocavity is demonstrated. Strong energy coupling between the Fabry-Perot cavity mode and photosynthetic resonance offers the potential of exploiting optical resonators to amplify photocurrent generation as well as energy harvesting. Biomimetic models and living photosynthesis are explored in which the power is increased by almost 600% and 200%, respectively. Systematic studies of photosystem fluorescence and photocurrent are simultaneously carried out. Finally, an optofluidic-based photosynthetic device is developed. It is envisaged that the key innovations proposed in this study can provide comprehensive insights in biological-energy sciences, suggesting a new avenue to amplify electrochemical signals using an optical cavity. Promising applications include photocatalysis, photoelectrochemistry, biofuel devices, and sustainable optoelectronics.

11.
Micromachines (Basel) ; 11(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867054

RESUMEN

This work demonstrates a self-powered and broadband photodetector using a heterojunction formed by camphor-based chemical vaper deposition (CVD) bilayer graphene on p-Si substrates. Here, graphene/p-Si heterostructures and graphene layers serve as ultra-shallow junctions for UV absorption and zero bandgap junction materials (95% coverage bilayer and high-uniformity graphene were successfully obtained by camphor-based CVD processes. Furthermore, the carrier mobility of the camphor-based CVD bilayer graphene at room temperature is 1.8 × 103 cm2/V·s. Due to the incorporation of camphor-based CVD graphene, the graphene/p-Si Schottky junctions show a good rectification property (rectification ratio of ~110 at ± 2 V) and good performance as a self-powered (under zero bias) photodetector from UV to LWNIR. The photocurrent to dark current ratio (PDCR) value is up to 230 at 0 V under white light illumination, and the detectivity (D*) is 8 × 1012 cmHz1/2/W at 560 nm. Furthermore, the photodetector (PD) response/decay time (i.e., rise/fall time) is ~118/120 µs. These results support the camphor-based CVD bilayer graphene/Si Schottky PDs for use in self-powered and ultra-broadband light detection in the future.

12.
Micromachines (Basel) ; 9(12)2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30544915

RESUMEN

The unique and outstanding electrical and optical properties of graphene make it a potential material to be used in the construction of high-performance photosensors. However, the fabrication process of a graphene photosensor is usually complicated and the size of the device also is restricted to micrometer scale. In this work, we report large-area photosensors based on reduced graphene oxide (rGO) implemented with Ag nanoparticles (AgNPs) via a simple and cost-effective method. To further optimize the performance of photosensors, the absorbance and distribution of the electrical field intensity of graphene with AgNPs was simulated using the finite-difference time-domain (FDTD) method through use of the surface plasmon resonance effect. Based on the simulated results, we constructed photosensors using rGO with 60⁻80 nm AgNPs and analyzed the characteristics at room temperature under white-light illumination for outdoor environment applications. The on/off ratio of the photosensor with AgNPs was improved from 1.166 to 9.699 at the bias voltage of -1.5 V, which was compared as a sample without AgNPs. The proposed photosensor affords a new strategy to construct cost-effective and large-area graphene films which raises opportunities in the field of next-generation optoelectronic devices operated in an outdoor environment.

13.
J Vis Exp ; (134)2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29757268

RESUMEN

This manuscript describes how to design and fabricate efficient inverted solar cells, which are based on a two-dimensional conjugated small molecule (SMPV1) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), by utilizing ZnO nanorods (NRs) grown on a high quality Al-doped ZnO (AZO) seed layer. The inverted SMPV1:PC71BM solar cells with ZnO NRs that grew on both a sputtered and sol-gel processed AZO seed layer are fabricated. Compared with the AZO thin film prepared by the sol-gel method, the sputtered AZO thin film exhibits better crystallization and lower surface roughness, according to X-ray diffraction (XRD) and atomic force microscope (AFM) measurements. The orientation of the ZnO NRs grown on a sputtered AZO seed layer shows better vertical alignment, which is beneficial for the deposition of the subsequent active layer, forming better surface morphologies. Generally, the surface morphology of the active layer mainly dominates the fill factor (FF) of the devices. Consequently, the well-aligned ZnO NRs can be used to improve the carrier collection of the active layer and to increase the FF of the solar cells. Moreover, as an anti-reflection structure, it can also be utilized to enhance the light harvesting of the absorption layer, with the power conversion efficiency (PCE) of solar cells reaching 6.01%, higher than the sol-gel based solar cells with an efficiency of 4.74%.


Asunto(s)
Nanotubos/química , Óxido de Zinc/química , Suministros de Energía Eléctrica
14.
Sci Rep ; 7: 46478, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28397864

RESUMEN

In the study, the chemically-derived reduced graphene oxide flakes on the pyramidal Si substrate to construct the heterojunction solar cells via simple spin-coating process have been presented. The total reflectance of chemically-derived graphene on pyramidal Si is ~12% at the wavelength of 550 nm which is remarkably reduced compared with that of reduced graphene oxide on planar Si. By modifying the density and distribution of reduced graphene oxide flakes on Si, the power conversion efficiency of 5.20% is achieved. Additionally, the simulated absorbance of different-thick graphene is implemented to optimize the performance of graphene/pyramidal Si devices. The fabrication technique for rGO-based devices has the merits of simplicity, large scale, high throughput and low cost, which is a new starting point in the direction of graphene-based material for the applications of next generation optoelectronics.

16.
Chem Biol Interact ; 242: 13-23, 2015 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-26335193

RESUMEN

Chrysophsin-1, an amphipathic alpha-helical antimicrobial peptide, is isolated from the gills of the red sea bream and possesses different structure and mechanism(s) in comparison with traditional multidrug resistance (MDR) modulators. For the purpose of reducing off-target normal cell toxicity, it is rational to incorporate chrysophsin-1 and epirubicin in a PEGylated liposomal formulation. In the present study, we report a multifunctional liposomes with epirubicin as an antineoplastic agent and an apoptosis inducer, as well as chrysophsin-1 as a MDR transporter inhibitor and an apoptosis modulator in human cervical cancer HeLa cells. Co-incubation of HeLa cells with PEGylated liposomal formulation of epirubicin and chrysophsin-1 resulted in a significant increase in the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or chrysophsin-1 were shown to considerably improve the intracellular H2O2 and O2(-) levels of HeLa cells. Furthermore, these treatments were found to extensively reduce mRNA expression levels of MDR1, MRP1, and MRP2. The addition of chrysophsin-1 in liposomes was demonstrated to substantially enhance the intracellular accumulation of epirubicin in HeLa cells. Moreover, the PEGylated liposomes of epirubicin and chrysophsin-1 were also found to significantly increase the mRNA expressions of p53, Bax, and Bcl-2. The ratio of Bax to Bcl-2 was noticeably amplified in the presence of these formulations. Apoptosis induction was also validated by chromatin condensation, a reduction in mitochondrial membrane potential, the increased sub-G1 phase of cell cycle, and more populations of apoptosis using annexin V/PI assay. These formulations were verified to increase the activity and mRNA expression levels of caspase-9 and caspases-3. Collectively, our findings provide the first evidence that cotreatment with free or liposomal chrysophsin-1 and epirubicin leads to cell death in human cervical cancer cells through the ROS-mediated inhibition of P-gp and MRPs and concerted activation of mitochondrial apoptosis pathway. Thus, chrysophsin-1 represents a potential antimicrobial peptide to function as a new generation of MDR-reversing agent to enhance the activity of cancer chemotherapeutics.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Epirrubicina/química , Liposomas/administración & dosificación , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Apoptosis/efectos de los fármacos , Apoptosis/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Epirrubicina/administración & dosificación , Epirrubicina/farmacocinética , Epirrubicina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa/efectos de los fármacos , Células HeLa/metabolismo , Humanos , Liposomas/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Polietilenglicoles/química , Especies Reactivas de Oxígeno/metabolismo
17.
ACS Nano ; 8(3): 2959-69, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24548164

RESUMEN

We demonstrated that hierarchical structures combining different scales (i.e., pyramids from 1.5 to 7.5 µm in width on grooves from 40 to 50 µm in diameter) exhibit excellent broadband and omnidirectional light-trapping characteristics. These microscaled hierarchical structures could not only improve light absorption but prevent poor electrical properties typically observed from nanostructures (e.g., ultra-high-density surface defects and nonconformal deposition of following layers, causing low open-circuit voltages and fill factors). The microscaled hierarchical Si heterojunction solar cells fabricated with hydrogenated amorphous Si layers on as-cut Czochralski n-type substrates show a high short-circuit current density of 36.4 mA/cm(2), an open-circuit voltage of 607 mV, and a conversion efficiency of 15.2% due to excellent antireflection and light-scattering characteristics without sacrificing minority carrier lifetimes. Compared to cells with grooved structures, hierarchical heterojunction solar cells exhibit a daily power density enhancement (69%) much higher than the power density enhancement at normal angle of incidence (49%), demonstrating omnidirectional photovoltaic characteristics of hierarchical structures. Such a concept of hierarchical structures simultaneously improving light absorption and photocarrier collection efficiency opens avenues for developing large-area and cost-effective solar energy devices in the industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA