Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Protein Expr Purif ; 210: 106313, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37276914

RESUMEN

Many therapeutic proteins are expressed in Escherichia coli bacteria for the low cost and high yield obtained. However, these gram-negative bacteria also generate undesirable endotoxin byproducts such as lipopolysaccharides (LPS). These endotoxins can induce a human immune response and cause severe inflammation. To mitigate this problem, we have employed the ClearColi BL21 (DE3) endotoxin-free cells as an expression host for Cas9 protein production. Cas9 is an endonuclease enzyme that plays a key role in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated protein 9 (CRISPR/Cas9) genome editing technique. This technology is very promising for use in diagnostics as well as treatment of diseases, especially for genetic diseases such as thalassemia. The potential uses for this technology thus generate a considerable interest for Cas9 utilization as a therapeutic protein in clinical treatment. Therefore, special care in protein production should be a major concern. Accordingly, we expressed the Cas9 protein in endotoxin-free bacterial cells achieving 99% purity with activity comparable to commercially available Cas9. Our protocol therefore yields a cost-effective product suitable for invitro experiments with stem cells.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Humanos , Endotoxinas/genética , Edición Génica/métodos , Proteínas Represoras
2.
Stem Cells ; 31(9): 1785-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23712774

RESUMEN

A patient with ß(E)/ß(0) -thalassemia major was converted to transfusion-independence 4.5 years ago by lentiviral gene transfer in hematopoietic stem cells while showing a myeloid-biased cell clone. Induced pluripotent stem cells (iPSCs) are a potential alternative source of hematopoietic stem cells. If fetal to adult globin class, switching does not occur in vivo in iPSC-derived erythroid cells, ß-globin gene transfer would be unnecessary. To investigate both vector integration skewing and the potential use of iPSCs for the treatment of thalassemia, we derived iPSCs from the thalassemia gene therapy patient and compared iPSC-derived hematopoietic cells to their natural isogenic somatic counterparts. In NSG immunodeficient mice, embryonic to fetal and a partial fetal to adult globin class switching were observed, indicating that the gene transfer is likely necessary for iPSC-based therapy of the ß-hemoglobinopathies. Lentivector integration occurred in regions of low and high genotoxicity. Surprisingly, common integration sites (CIS) were identified across those iPSCs and cells retrieved from isogenic and nonisogenic gene therapy patients with ß-thalassemia and adrenoleukodystrophy, respectively. This suggests that CIS observed in the absence of overt tumorigenesis result from nonrandom lentiviral integration rather than oncogenic in vivo selection. These findings bring the use of iPSCs closer to practicality and further clarify our interpretation of genome-wide lentivector integration.


Asunto(s)
Globinas/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Lentivirus/metabolismo , Transducción Genética , Talasemia beta/patología , Adulto , Animales , Diferenciación Celular/efectos de los fármacos , Células Eritroides/citología , Células Eritroides/efectos de los fármacos , Células Eritroides/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Vectores Genéticos/metabolismo , Globinas/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Mutágenos/toxicidad , Regeneración/efectos de los fármacos , Integración Viral/efectos de los fármacos
3.
Sci Rep ; 14(1): 9177, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649404

RESUMEN

Gaucher disease (GD) is a lysosomal storage disorder caused by a mutation in the GBA1 gene, responsible for encoding the enzyme Glucocerebrosidase (GCase). Although neuronal death and neuroinflammation have been observed in the brains of individuals with neuronopathic Gaucher disease (nGD), the exact mechanism underlying neurodegeneration in nGD remains unclear. In this study, we used two induced pluripotent stem cells (iPSCs)-derived neuronal cell lines acquired from two type-3 GD patients (GD3-1 and GD3-2) to investigate the mechanisms underlying nGD by biochemical analyses. These iPSCs-derived neuronal cells from GD3-1 and GD3-2 exhibit an impairment in endoplasmic reticulum (ER) calcium homeostasis and an increase in unfolded protein response markers (BiP and CHOP), indicating the presence of ER stress in nGD. A significant increase in the BAX/BCL-2 ratio and an increase in Annexin V-positive cells demonstrate a notable increase in apoptotic cell death in GD iPSCs-derived neurons, suggesting downstream signaling after an increase in the unfolded protein response. Our study involves the establishment of iPSCs-derived neuronal models for GD and proposes a possible mechanism underlying nGD. This mechanism involves the activation of ER stress and the unfolded protein response, ultimately leading to apoptotic cell death in neurons.


Asunto(s)
Estrés del Retículo Endoplásmico , Enfermedad de Gaucher , Células Madre Pluripotentes Inducidas , Neuronas , Respuesta de Proteína Desplegada , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/patología , Enfermedad de Gaucher/genética , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/patología , Apoptosis , Calcio/metabolismo , Diferenciación Celular , Línea Celular
4.
Stem Cell Res ; 78: 103448, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810502

RESUMEN

Mutations in the eyes shut homolog (EYS) gene are one of the common causes of autosomal recessive retinitis pigmentosa (RP). The lack of suitable animal models hampers progress understanding of the disease mechanism and drug development. This study reported the reprogramming of CD34+ hematopoietic stem/progenitor cells from a patient with compound heterozygous EYS mutations (c.6416 G > A and c.7228 + 1 G > A) into the induced pluripotent stem cell line, MUi038-A, using non-integrating vectors. The MUi038-A demonstrates pluripotency, tri-lineage differentiation potential, and a normal karyotype, offering a valuable model for studying the mechanism of EYS-related RP and new therapeutic development.


Asunto(s)
Proteínas del Ojo , Células Madre Pluripotentes Inducidas , Retinitis Pigmentosa , Humanos , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Línea Celular , Diferenciación Celular , Mutación
5.
Stem Cell Res Ther ; 15(1): 60, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433217

RESUMEN

BACKGROUND: The diarylheptanoid ASPP 049 has improved the quality of adult hematopoietic stem cell (HSC) expansion ex vivo through long-term reconstitution in animal models. However, its effect on hematopoietic regeneration from human induced pluripotent stem cells (hiPSCs) is unknown. METHOD: We utilized a defined cocktail of cytokines without serum or feeder followed by the supplementation of ASPP 049 to produce hematopoietic stem/progenitor cells (HSPCs). Flow cytometry and trypan blue exclusion analysis were used to identify nonadherent and adherent cells. Nonadherent cells were harvested to investigate the effect of ASPP 049 on multipotency using LTC-IC and CFU assays. Subsequently, the mechanism of action was explored through transcriptomic profiles, which were validated by qRT-PCR, immunoblotting, and immunofluorescence analysis. RESULT: The supplementation of ASPP 049 increased the number of phenotypically defined primitive HSPCs (CD34+CD45+CD90+) two-fold relative to seeded hiPSC colonies, indicating enhanced HSC derivation from hiPSCs. Under ASPP 049-supplemented conditions, we observed elevated HSPC niches, including CD144+CD73- hemogenic- and CD144+CD73+ vascular-endothelial progenitors, during HSC differentiation. Moreover, harvested ASPP 049-treated cells exhibited improved self-renewal and a significantly larger proportion of different blood cell colonies with unbiased lineages, indicating enhanced HSC stemness properties. Transcriptomics and KEGG analysis of sorted CD34+CD45+ cells-related mRNA profiles revealed that the Hippo signaling pathway is the most significant in responding to WWTR1/TAZ, which correlates with the validation of the protein expression. Interestingly, ASPP 049-supplemented HSPCs upregulated 11 genes similarly to umbilical cord blood-derived HSPCs. CONCLUSION: These findings suggest that ASPP 049 can improve HSC-generating protocols with proliferative potentials, self-renewal ability, unbiased differentiation, and a definable mechanism of action for the clinical perspective of hematopoietic regenerative medicine.


Asunto(s)
Vía de Señalización Hippo , Células Madre Pluripotentes Inducidas , Adulto , Animales , Humanos , Diferenciación Celular , Diarilheptanoides/farmacología , Antígenos CD34
6.
Stem Cell Res ; 73: 103228, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37890329

RESUMEN

Hemoglobin E (HbE), a common variant in Southeast Asian populations, results from a G to A substitution at codon 26 of the HBB gene, causing abnormal Hb and mild ß-thalassemia-like symptoms. Here, we derived an induced pluripotent stem cell (iPSC) line, named MUi033-A, from a male homozygous for HbE. The iPSC line demonstrates a normal karyotype and embryonic stem cell-like properties including pluripotency gene expression, and tri-lineage differentiation potential. This iPSC resource holds the potential for investigating gene therapy targeting HbE mutation.


Asunto(s)
Hemoglobina E , Células Madre Pluripotentes Inducidas , Talasemia beta , Humanos , Masculino , Hemoglobina E/genética , Hemoglobina E/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Talasemia beta/genética , Talasemia beta/metabolismo , Talasemia beta/terapia , Homocigoto
7.
Stem Cell Res ; 73: 103229, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37890332

RESUMEN

Gaucher disease (GD) is a common lysosomal storage disease resulting from mutations in the glucocerebrosidase (GBA1) gene. This genetic disorder manifests with symptoms affecting multiple organs, yet the underlying mechanisms leading to pathology remain elusive. In this study, we successfully generated the MUi030-A human induced pluripotent stem cell (hiPSC) line using a non-integration method from a male type-3 GD patient with a homozygous c.1448T>C (L444P) mutation. These hiPSCs displayed a normal karyotype and pluripotency markers and the remarkable ability to differentiate into cells representing all three germ layers. This resourceful model holds significant promise for illuminating GD's underlying pathogenesis.


Asunto(s)
Enfermedad de Gaucher , Células Madre Pluripotentes Inducidas , Humanos , Masculino , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Enfermedad de Gaucher/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Células Cultivadas
8.
Viruses ; 15(10)2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37896789

RESUMEN

Every year, dengue virus (DENV) affects millions of people. Currently, there are no approved drugs for the treatment of DENV infection. Autophagy is a conserved degradation process that was shown to be induced by DENV infection and required for optimal DENV replication. The modulation of autophagy is, therefore, considered an attractive target to treat DENV infection. This study carried out a high-content image screen analysis using Crispr-Cas9 GFP-LC3 knocked-in HeLa cells of a compound library synthesized from or inspired by natural products and their biocongener precursors to discover novel autophagy inhibitors. The screen identified Ka-003 as the most effective compound for decreasing the number of autophagic vacuoles inside cells upon autophagy induction. Ka-003 could inhibit autophagy in a dose-dependent manner at low micromolar concentrations. More importantly, Ka-003 demonstrated the concentration-dependent inhibition of DENV production in Crispr-Cas9 GFP-LC3 knocked-in THP-1 monocytes. The core structure of Ka-003, which is a methyl cyclohexene derivative, resembles those found in mulberry plants, and could be synthetically prepared in a bioinspired fashion. Taken together, data indicate that Ka-003 hampered autophagy and limited DENV replication. The low cytotoxicity of Ka-003 suggests its therapeutic potential, which warrants further studies for the lead optimization of the compound for dengue treatment.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Virus del Dengue/fisiología , Células HeLa , Autofagia/fisiología , Replicación Viral
9.
J Pers Med ; 12(5)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35629189

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most prevalent genetic diseases affecting the kidneys. A genetically specific mutation model is required to comprehend its pathophysiology and to develop a drug treatment. In this study, we successfully developed human induced pluripotent stem cells (hiPSCs) named MUi027-A from skin fibroblasts of a patient diagnosed with ADPKD and carrying the PKD1 frameshift mutation (c.7946_7947delCT). MUi027-A cells showed the same genetic fingerprints as the parental cells, including the presence of the PKD1 mutation. MUi027-A hiPSCs displayed embryonic stem cell-like characteristics with the capability of differentiating into the three germ layers. Upon directed differentiation, MUi027-A hiPSCs could be differentiated into tubular organoids with the expression of renal cell markers. Furthermore, we compared the efficiency of cyst formation in two human iPSC lines with different PKD1 mutations. When cyst formation was induced by either forskolin or blebbistatin, MUi027-A hiPSC-derived kidney organoids displayed higher frequencies of cyst formation when compared to organoids generated from an iPSC cell line with non-truncating PKD1 mutation genotype (c.5878C > T), suggesting the presence of physiological differences in the mechanism of cyst formation between different PKD1 mutants. Overall, we generated and characterized a novel human iPSC line with a specific PKD mutation and demonstrated its potential as a disease model to study the pathophysiology of genetic determinants in the development of ADPKD disease.

10.
Stem Cell Res ; 60: 102698, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35151019

RESUMEN

Gaucher disease (GD) is one of the most prevalent lysosomal storage diseases caused by mutation of glucocerebrosidase (GBA1) gene. GD patients develop symptoms in various organs of the body; however, the underlying mechanisms causing pathology are still elusive. Thus, a suitable disease model is important in order to facilitate subsequent investigations. Here, we established MUi031-A human induced pluripotent stem cell (hiPSC) line from CD34+ hematopoietic stem cells of a female type-3 GD patient with homozygous c.1448 T > C (L444P) mutation. The cells exhibited embryonic stem cell-like characteristics and expressed pluripotency markers with capability to differentiate into three germ layers.


Asunto(s)
Enfermedad de Gaucher , Células Madre Pluripotentes Inducidas , Femenino , Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Homocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética
11.
Sci Rep ; 12(1): 18628, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329049

RESUMEN

ß-Thalassaemia results from defects in ß-globin chain production, leading to ineffective erythropoiesis and subsequently to severe anaemia and other complications. Apoptosis and autophagy are the main pathways that regulate the balance between cell survival and cell death in response to diverse cellular stresses. Herein, the death of erythroid lineage cells in the bone marrow from both ßIVS2-654-thalassaemic mice and ß-thalassaemia/HbE patients was investigated. Phosphatidylserine (PS)-bearing basophilic erythroblasts and polychromatophilic erythroblasts were significantly increased in ß-thalassaemia as compared to controls. However, the activation of caspase 8, caspase 9 and caspase 3 was minimal and not different from control in both murine and human thalassaemic erythroblasts. Interestingly, bone marrow erythroblasts from both ß-thalassaemic mice and ß-thalassaemia/HbE patients had significantly increased autophagy as shown by increased autophagosomes and increased co-localization between LC3 and LAMP-1. Inhibition of autophagy by chloroquine caused significantly increased erythroblast apoptosis. We have demonstrated increased autophagy which led to minimal apoptosis in ß-thalassaemic erythroblasts. However, increased PS exposure occurring through other mechanisms in thalassaemic erythroblasts might cause rapid phagocytic removal by macrophages and consequently ineffective erythropoiesis in ß-thalassaemia.


Asunto(s)
Eritropoyesis , Talasemia beta , Humanos , Ratones , Animales , Talasemia beta/metabolismo , Eritroblastos , Autofagia , Apoptosis
12.
Stem Cell Res ; 65: 102964, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36395688

RESUMEN

Choroideremia (CHM) is a monogenic, X-linked inherited retinal disease caused by mutations in the CHM gene. CHM patients develop progressive loss of vision due to degeneration of cell layers in the retina. In this report, the human-induced pluripotent stem cell, MUi032-A, was generated from CD34+ hematopoietic stem/progenitor cells of a male CHM patient by co-electroporation of non-integration episomal vectors containing OCT4/shp53, Sox-2/KLF4, and L-MYC/LIN-28. The MUi032-A showed normal karyotype and a hemizygous c.715C > T mutation. They expressed pluripotency markers and differentiated into cells derived from three germ layers. This cell line may be useful for disease mechanisms and gene therapy studies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Coroideremia , Hemicigoto , Células Madre Pluripotentes Inducidas , Humanos , Masculino , Proteínas Adaptadoras Transductoras de Señales/genética , Mutación/genética , Coroideremia/genética , Coroideremia/patología , Línea Celular
13.
Stem Cell Res ; 65: 102979, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36427475

RESUMEN

Hemoglobin Constant Spring (HbCS) is unstable hemoglobin resulting from a nucleotide substitution at the termination codon of the HBA2 gene (c.427 T > C). The homozygous state for HbCS is non-transfusion dependent in adults. Nevertheless, severe anemia is often observed in fetuses. Here, human induced pluripotent stem cell line MUi034-A was generated from peripheral blood CD34+ hematopoietic stem/progenitor cells (HSPCs) derived from a 14-year-old female with homozygous HbCS who had a history of severe anemia and hydrops during fetal period. The MUi034-A cell line represented embryonic-like characteristics as they expressed specific pluripotency markers, differentiated into the three germ layers, and retained normal karyotyping.


Asunto(s)
Anemia , Células Madre Pluripotentes Inducidas , Humanos , Adolescente
14.
Pathog Dis ; 80(1)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35038342

RESUMEN

Mycobacterium tuberculosis utilizes several mechanisms to block phagosome-lysosome fusion to evade host cell restriction. However, induction of host cell autophagy by starvation was shown to overcome this block, resulting in enhanced lysosomal delivery to mycobacterial phagosomes and the killing of the M. tuberculosis reference strain H37Rv. Nevertheless, our previous studies found that strains belonging to the M. tuberculosis Beijing genotype can resist starvation-induced autophagic elimination, though the mycobacterial factors involved remain unclear. In this study, we showed that KatG expression is upregulated in the autophagy-resistant M. tuberculosis Beijing strain (BJN) during autophagy induction by the starvation of host macrophages, while such increase was not observed in the H37Rv. KatG depletion using the CRISPR-dCas9 interference system in the BJN resulted in increased lysosomal delivery to its phagosome and decreased its survival upon autophagy induction by starvation. As KatG functions by catabolizing ROS, we determined the source of ROS contributing to the starvation-induced autophagic elimination of mycobacteria. Using siRNA-mediated knockdown, we found that Superoxide dismutase 2, which generates mitochondrial ROS but not NADPH oxidase 2, is important for the starvation-induced lysosomal delivery to mycobacterial phagosomes. Taken together, these findings showed that KatG is vital for the BJN to evade starvation-induced autophagic restriction.


Asunto(s)
Mycobacterium tuberculosis , Autofagia/genética , Beijing , Lisosomas/microbiología , Mycobacterium tuberculosis/genética , Fagosomas/metabolismo
15.
Br J Haematol ; 154(5): 635-43, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21732929

RESUMEN

Thalassaemia is characterized by the reduced or absent production of globins in the haemoglobin molecule leading to imbalanced α-globin/non α-globin chains. HbE, the result of a G to A mutation in codon 26 of the HBB (ß-globin) gene, activates a cryptic 5' splice site in codon 25 leading to a reduction of correctly spliced ß(E) -globin (HBB:c.79G>A) mRNA and consequently ß(+) -thalassaemia. A wide range of clinical severities in bothα- and ß-thalassaemia syndromes, from nearly asymptomatic to transfusion-dependent, has been observed. The correlation between clinical heterogeneity in various genotypes of thalassaemia and the levels of globin gene expression and ß(E) -globin pre-mRNA splicing were examined using multiplex quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) and allele-specific RT-qPCR. The α-globin/non α-globin mRNA ratio was demonstrated to be a good indicator for disease severity among different thalassaemia disorders. However, the α-globin/non α-globin mRNA ratio ranged widely in ß-thalassaemia/HbE patients, with no significant difference between mild and severe phenotypes. Interestingly, the correctly to aberrantly spliced ß(E) -globin mRNA ratio in 30% of mild ß-thalassaemia/HbE patients was higher than that of the severe patients. The splicing process of ß(E) -globin pre-mRNA differs among ß-thalassaemia/HbE patients and serves as one of the modifying factors for disease severity.


Asunto(s)
Globinas/genética , Precursores del ARN/genética , Empalme del ARN , Índice de Severidad de la Enfermedad , Talasemia/genética , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Pronóstico , Precursores del ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Talasemia/diagnóstico , Globinas alfa/genética , Globinas beta/genética
16.
Sci Rep ; 11(1): 22448, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789798

RESUMEN

Cisplatin (CDDP) induces senescence characterized by senescence-associated secretory phenotypes (SASP) and the unfolded protein response (UPR). In this study, we investigated the proteins related to the UPR during the senescence cell fate. Strikingly, we found that one of the critical ER-resident proteins, GRP78/BiP, was significantly altered. Here we show that GRP78 levels differentially expressed depending on non-small lung cancer subtypes. GRP78 indeed regulates the evasion of senescence in adenocarcinoma A549 cells, in which the increased GRP78 levels enable them to re-proliferate after CDDP removal. Conversely, GRP78 is downregulated in the senescence H460 cells, making them lacking senescence evasion capability. We observed that the translational regulation critically contributed to the GRP78 protein levels in CDDP-induces senescence. Furthermore, the increased GRP78 level during senescence confers resistance to senolytic drug, Bortezomib, as observed by a twofold increase in IC50 in A549 senescence cells compared to the wild-type. This observation is also consistent in the cells that have undergone genetic manipulation by transfection with pcDNA3.1(+)-GRP78/BiP plasmids and pSpCas9(BB)-2A-Puro containing guide RNA sequence targeting GRP78 exon 3 to induce the overexpression and downregulation of GRP78 in H460 cells, respectively. Our findings reveal a unique role of GRP78 on the senescence evasion cell fate and senolytic drug resistance after cisplatin-based chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Cisplatino/farmacología , Chaperón BiP del Retículo Endoplásmico/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Bortezomib/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Chaperón BiP del Retículo Endoplásmico/genética , Humanos , Concentración 50 Inhibidora , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Transfección , Respuesta de Proteína Desplegada/efectos de los fármacos , Regulación hacia Arriba/genética
17.
PeerJ ; 9: e11388, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026357

RESUMEN

BACKGROUND: Several pieces of evidence from in vitro studies showed that brain-derived neurotrophic factor (BDNF) promotes proliferation and differentiation of neural stem/progenitor cells (NSCs) into neurons. Moreover, the JAK2 pathway was proposed to be associated with mouse NSC proliferation. BDNF could activate the STAT-3 pathway and induce proliferation in mouse NSCs. However, its effects on proliferation are not fully understood and JAK/STAT pathway was proposed to play a role in this activity. METHODS: In the present study, the effects of BDNF on cell proliferation and neurite outgrowth of Alzheimer's disease (AD) induced pluripotent stem cells (iPSCs)-derived human neural progenitor cells (hNPCs) were examined. Moreover, a specific signal transduction pathway important in cell proliferation was investigated using a JAK2 inhibitor (AG490) to clarify the role of that pathway. RESULTS: The proliferative effect of BDNF was remarkably observed as an increase in Ki-67 positive cells. The cell number of hNPCs was significantly increased after BDNF treatment represented by cellular metabolic activity of the cells measured by MTT assay. This noticeable effect was statistically shown at 20 ng/ml of BDNF treatment. BDNF, however, did not promote neurite outgrowth but increased neuronal cell number. It was found that AG490 suppressed hNPCs proliferation. However, this inhibitor partially decreased BDNF-induced hNPCs proliferation. These results demonstrated the potential role of BDNF for the amelioration of AD through the increase of AD-derived hNPCs number.

18.
Stem Cell Res ; 53: 102306, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33799277

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is one of the common genetic kidney disorders that are caused by mutations in PKD1 or PKD2 gene. In this report, the MUi026-A human induced pluripotent stem cell (hiPSC) line was established from the skin fibroblasts of a female ADPKD patient who had the PKD1 mutation with c.5878C > T. The iPSC line retained normal karyotype. The cells displayed embryonic stem cell-like characteristics with pluripotency marker expression and were able to differentiate into three germ layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Riñón Poliquístico Autosómico Dominante , Femenino , Humanos , Mutación , Mutación Puntual , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética
19.
Sci Rep ; 11(1): 3199, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542438

RESUMEN

Tuberculosis is a global public health problem with emergence of multidrug-resistant infections. Previous epidemiological studies of tuberculosis in Thailand have identified a clonal outbreak multidrug-resistant strain of Mycobacterium tuberculosis in the Kanchanaburi province, designated "MKR superspreader", and this particular strain later was found to also spread to other regions. In this study, we elucidated its biology through RNA-Seq analyses and identified a set of genes involved in cholesterol degradation to be up-regulated in the MKR during the macrophage cell infection, but not in the H37Rv reference strain. We also found that the bacterium up-regulated genes associated with the ESX-1 secretion system during its intracellular growth phase, while the H37Rv did not. All results were confirmed by qRT-PCR. Moreover, we showed that compounds previously shown to inhibit the mycobacterial ESX-1 secretion system and cholesterol utilisation, and FDA-approved drugs known to interfere with the host cholesterol transportation were able to decrease the intracellular survival of the MKR when compared to the untreated control, while not that of the H37Rv. Altogether, our findings suggested that such pathways are important for the MKR's intracellular growth, and potentially could be targets for the discovery of new drugs against this emerging multidrug-resistant strain of M. tuberculosis.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Colesterol/metabolismo , Interacciones Huésped-Patógeno/genética , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Sistemas de Secreción Tipo VII/genética , Antígenos Bacterianos/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Beijing/epidemiología , Biotransformación , Células Clonales , Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Redes y Vías Metabólicas/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/patogenicidad , Células THP-1 , Tailandia/epidemiología , Transcripción Genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/patología , Sistemas de Secreción Tipo VII/efectos de los fármacos , Sistemas de Secreción Tipo VII/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA