Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 185(26): 4887-4903.e17, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563662

RESUMEN

Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.


Asunto(s)
Macrófagos , Fagocitosis , Animales , Ratones , Macrófagos/metabolismo , Inflamación/metabolismo , Fagocitos/metabolismo , Proteínas Portadoras/metabolismo , Apoptosis , Proteínas Adaptadoras Transductoras de Señales/metabolismo
2.
Nature ; 628(8007): 408-415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480883

RESUMEN

During development, inflammation or tissue injury, macrophages may successively engulf and process multiple apoptotic corpses via efferocytosis to achieve tissue homeostasis1. How macrophages may rapidly adapt their transcription to achieve continuous corpse uptake is incompletely understood. Transcriptional pause/release is an evolutionarily conserved mechanism, in which RNA polymerase (Pol) II initiates transcription for 20-60 nucleotides, is paused for minutes to hours and is then released to make full-length mRNA2. Here we show that macrophages, within minutes of corpse encounter, use transcriptional pause/release to unleash a rapid transcriptional response. For human and mouse macrophages, the Pol II pause/release was required for continuous efferocytosis in vitro and in vivo. Interestingly, blocking Pol II pause/release did not impede Fc receptor-mediated phagocytosis, yeast uptake or bacterial phagocytosis. Integration of data from three genomic approaches-precision nuclear run-on sequencing, RNA sequencing, and assay for transposase-accessible chromatin using sequencing (ATAC-seq)-on efferocytic macrophages at different time points revealed that Pol II pause/release controls expression of select transcription factors and downstream target genes. Mechanistic studies on transcription factor EGR3, prominently regulated by pause/release, uncovered EGR3-related reprogramming of other macrophage genes involved in cytoskeleton and corpse processing. Using lysosomal probes and a new genetic fluorescent reporter, we identify a role for pause/release in phagosome acidification during efferocytosis. Furthermore, microglia from egr3-deficient zebrafish embryos displayed reduced phagocytosis of apoptotic neurons and fewer maturing phagosomes, supporting defective corpse processing. Collectively, these data indicate that macrophages use Pol II pause/release as a mechanism to rapidly alter their transcriptional programs for efficient processing of the ingested apoptotic corpses and for successive efferocytosis.


Asunto(s)
Eferocitosis , Macrófagos , ARN Polimerasa II , Elongación de la Transcripción Genética , Animales , Humanos , Masculino , Ratones , Apoptosis , Citoesqueleto/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz/deficiencia , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Eferocitosis/genética , Concentración de Iones de Hidrógeno , Macrófagos/inmunología , Macrófagos/metabolismo , Neuronas/metabolismo , Fagosomas/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Factores de Tiempo
3.
Nat Methods ; 14(7): 710-712, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28581493

RESUMEN

CRISPR-Cas9-induced DNA damage may have deleterious effects at high-copy-number genomic regions. Here, we use CRISPR base editors to knock out genes by changing single nucleotides to create stop codons. We show that the CRISPR-STOP method is an efficient and less deleterious alternative to wild-type Cas9 for gene-knockout studies. Early stop codons can be introduced in ∼17,000 human genes. CRISPR-STOP-mediated targeted screening demonstrates comparable efficiency to WT Cas9, which indicates the suitability of our approach for genome-wide functional screenings.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Codón de Terminación/genética , Silenciador del Gen , Codón sin Sentido , Regulación de la Expresión Génica , Marcación de Gen/métodos , Vectores Genéticos , Células HEK293 , Humanos , Plásmidos
4.
Bioelectromagnetics ; 39(4): 299-311, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29446477

RESUMEN

Diabetes mellitus is a metabolic disease that causes increased morbidity and mortality in developed and developing countries. With recent advancements in technology, alternative treatment methods have begun to be investigated in the world. This study aims to evaluate the effect of pulsed magnetic field (PMF) on vascular complications and contractile activities of aortic rings along with Kir6.1 and Kir6.2 subunit expressions of ATP-sensitive potassium channels (KATP ) in aortas of controlled-diabetic and non-controlled diabetic rats. Controlled-diabetic and non-controlled diabetic adult male Wistar rats were exposed to PMF for a period of 6 weeks according to the PMF application protocol (1 h/day; intensity: 1.5 mT; consecutive frequency: 1, 10, 20, and 40 Hz). After PMF exposure, body weight and blood glucose levels were measured. Then, thoracic aorta tissue was extracted for relaxation-contraction and Kir6.1 and Kir6.2 expression experiments. Blood plasma glucose levels, body weight, and aortic ring contraction percentage decreased in controlled-diabetic rats but increased in non-controlled diabetic rats. PMF therapy repressed Kir6.1 mRNA expression in non-controlled diabetic rats but not in controlled diabetic rats. Conversely, Kir6.2 mRNA expressions were repressed both in controlled diabetic and non-controlled diabetic rats by PMF. Our findings suggest that the positive therapeutic effects of PMF may act through (KATP ) subunits and may frequently occur in insulin-free conditions. Bioelectromagnetics. 39:299-311, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Aorta/fisiopatología , Diabetes Mellitus Experimental/fisiopatología , Canales KATP/metabolismo , Campos Magnéticos , Canales de Potasio de Rectificación Interna/metabolismo , Vasoconstricción , Animales , Glucemia/metabolismo , Peso Corporal , Diabetes Mellitus Experimental/metabolismo , Canales KATP/genética , Masculino , Músculo Liso Vascular/fisiopatología , Canales de Potasio de Rectificación Interna/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
5.
J Neurochem ; 139(2): 197-207, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27501468

RESUMEN

MicroRNAs are short non-coding RNAs that provide global regulation of gene expression at the post-transcriptional level. Such regulation has been found to play a role in stress-induced epigenetic responses in the brain. The norepinephrine transporter (NET) and glucocorticoid receptors are closely related to the homeostatic integration and regulation after stress. Our previous studies demonstrated that NET mRNA and protein levels in rats are regulated by chronic stress and by administration of corticosterone, which is mediated through glucocorticoid receptors. Whether miRNAs are intermediaries in the regulation of these proteins remains to be elucidated. This study was undertaken to determine possible regulatory effects of miRNAs on the expression of NET and glucocorticoid receptors in the noradrenergic neuronal cell line. Using computational target prediction, we identified several candidate miRNAs potentially targeting NET and glucocorticoid receptors. Western blot results showed that over-expression of miR-181a and miR-29b significantly repressed protein levels of NET, which is accompanied by a reduced [3 H] norepinephrine uptake, and glucocorticoid receptors in PC12 cells. Luciferase reporter assays verified that both miR-181a and miR-29b bind the 3'UTR of mRNA of NET and glucocorticoid receptors. Furthermore, exposure of PC12 cells to corticosterone markedly reduced the endogenous levels of miR-29b, which was not reversed by the application of glucocorticoid receptor antagonist mifepristone. These observations indicate that miR-181a and miR-29b can function as the negative regulators of NET and glucocorticoid receptor translation in vitro. This regulatory effect may be related to stress-induced up-regulation of the noradrenergic phenotype, a phenomenon observed in stress models and depressive patients. This study demonstrated that miR-29b and miR-181a, two short non-coding RNAs that provide global regulation of gene expression, markedly repressed protein levels of norepinephrine (NE) transporter and glucocorticoid receptor (GR), as well as NE uptake by binding the 3'UTR of their mRNAs in PC12 cells. Also, exposure of cells to corticosterone significantly reduced miR-29b levels through a GR-independent way.


Asunto(s)
MicroARNs/genética , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/biosíntesis , Receptores de Glucocorticoides/biosíntesis , Regiones no Traducidas 3' , Animales , Simulación por Computador , Corticosterona/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , MicroARNs/biosíntesis , Mifepristona/farmacología , Norepinefrina/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/efectos de los fármacos , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética , Células PC12 , Ratas , Receptores de Glucocorticoides/efectos de los fármacos , Receptores de Glucocorticoides/genética
6.
J Neurochem ; 135(1): 38-49, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26212818

RESUMEN

Corticotropin releasing factor (CRF) has been implicated to act as a neurotransmitter or modulator in central nervous activation during stress. In this study, we examined the regulatory effect of CRF on the expression and function of the norepinephrine transporter (NET) in vitro. SK-N-BE (2) M17 cells were exposed to different concentrations of CRF for different periods. Results showed that exposure of cells to CRF significantly increased mRNA and protein levels of NET in a concentration- and time-dependent manner. The CRF-induced increase in NET expression was mimicked by agonists of either CRF receptor 1 or 2. Furthermore, similar CRF treatments induced a parallel increase in the uptake of [(3) H] norepinephrine. Both increased expression and function of NET caused by CRF were abolished by simultaneous administration of CRF receptor antagonists, indicating a mediation by CRF receptors. However, there was no additive effect for the combination of both receptor antagonists. Chromatin immunoprecipitation assays confirm an increased acetylation of histone H3 on the NET promoter following treatment with CRF. Taken together, this study demonstrates that CRF up-regulates the expression and function of NET in vitro. This regulation is mediated through CRF receptors and an epigenetic mechanism related to histone acetylation may be involved. This CRF-induced regulation on NET expression and function may play a role in development of stress-related depression and anxiety. This study demonstrated that corticotropin release factor (CRF) up-regulated the expression and function of norepinephrine transporter (NET) in a concentration- and time-dependent manner, through activation of CRF receptors and possible histone acetylation in NET promoter. The results indicate that their interaction may play an important role in stress-related physiological and pathological status.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Estrés Fisiológico/fisiología , Activación Transcripcional/fisiología , Ansiedad/metabolismo , Línea Celular , Humanos , Norepinefrina/metabolismo , ARN Mensajero/metabolismo , Regulación hacia Arriba/fisiología
7.
Sci Immunol ; 7(71): eabm4032, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35559667

RESUMEN

Epithelial tissues such as lung and skin are exposed to the environment and therefore particularly vulnerable to damage during injury or infection. Rapid repair is therefore essential to restore function and organ homeostasis. Dysregulated epithelial tissue repair occurs in several human disease states, yet how individual cell types communicate and interact to coordinate tissue regeneration is incompletely understood. Here, we show that pannexin 1 (Panx1), a cell membrane channel activated by caspases in dying cells, drives efficient epithelial regeneration after tissue injury by regulating injury-induced epithelial proliferation. Lung airway epithelial injury promotes the Panx1-dependent release of factors including ATP, from dying epithelial cells, which regulates macrophage phenotype after injury. This process, in turn, induces a reparative response in tissue macrophages that includes the induction of the soluble mitogen amphiregulin, which promotes injury-induced epithelial proliferation. Analysis of regenerating lung epithelium identified Panx1-dependent induction of Nras and Bcas2, both of which positively promoted epithelial proliferation and tissue regeneration in vivo. We also established that this role of Panx1 in boosting epithelial repair after injury is conserved between mouse lung and zebrafish tailfin. These data identify a Panx1-mediated communication circuit between epithelial cells and macrophages as a key step in promoting epithelial regeneration after injury.


Asunto(s)
Conexinas , Células Epiteliales , Proteínas del Tejido Nervioso , Heridas y Lesiones , Animales , Conexinas/genética , Conexinas/metabolismo , Células Epiteliales/citología , Pulmón/metabolismo , Ratones , Proteínas de Neoplasias , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Pez Cebra
8.
Dev Cell ; 57(11): 1331-1346.e9, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35508175

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) cells reprogram their transcriptional and metabolic programs to survive the nutrient-poor tumor microenvironment. Through in vivo CRISPR screening, we discovered islet-2 (ISL2) as a candidate tumor suppressor that modulates aggressive PDA growth. Notably, ISL2, a nuclear and chromatin-associated transcription factor, is epigenetically silenced in PDA tumors and high promoter DNA methylation or its reduced expression correlates with poor patient survival. The exogenous ISL2 expression or CRISPR-mediated upregulation of the endogenous loci reduces cell proliferation. Mechanistically, ISL2 regulates the expression of metabolic genes, and its depletion increases oxidative phosphorylation (OXPHOS). As such, ISL2-depleted human PDA cells are sensitive to the inhibitors of mitochondrial complex I in vitro and in vivo. Spatial transcriptomic analysis shows heterogeneous intratumoral ISL2 expression, which correlates with the expression of critical metabolic genes. These findings nominate ISL2 as a putative tumor suppressor whose inactivation leads to increased mitochondrial metabolism that may be exploitable therapeutically.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas con Homeodominio LIM , Proteínas del Tejido Nervioso , Neoplasias Pancreáticas , Factores de Transcripción , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Epigénesis Genética , Genes Supresores de Tumor , Humanos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Pancreáticas/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral/genética
9.
ASN Neuro ; 13: 17590914211009730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33940943

RESUMEN

Dysfunction of the central noradrenergic and dopaminergic systems is the primary neurobiological characteristic of Parkinson's disease (PD). Importantly, neuronal loss in the locus coeruleus (LC) that occurs in early stages of PD may accelerate progressive loss of dopaminergic neurons. Therefore, restoring the activity and function of the deficient noradrenergic system may be an important therapeutic strategy for early PD. In the present study, the lentiviral constructions of transcription factors Phox2a/2b, Hand2 and Gata3, either alone or in combination, were microinjected into the LC region of the PD model VMAT2 Lo mice at 12 and 18 month age. Biochemical analysis showed that microinjection of lentiviral expression cassettes into the LC significantly increased mRNA levels of Phox2a, and Phox2b, which were accompanied by parallel increases of mRNA and proteins of dopamine ß-hydroxylase (DBH) and tyrosine hydroxylase (TH) in the LC. Furthermore, there was considerable enhancement of DBH protein levels in the frontal cortex and hippocampus, as well as enhanced TH protein levels in the striatum and substantia nigra. Moreover, these manipulations profoundly increased norepinephrine and dopamine concentrations in the striatum, which was followed by a remarkable improvement of the spatial memory and locomotor behavior. These results reveal that over-expression of these transcription factors in the LC improves noradrenergic and dopaminergic activities and functions in this rodent model of PD. It provides the necessary groundwork for the development of gene therapies of PD, and expands our understanding of the link between the LC-norepinephrine and dopamine systems during the progression of PD.


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Locus Coeruleus/metabolismo , Norepinefrina/biosíntesis , Trastornos Parkinsonianos/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/biosíntesis , Animales , Dopamina beta-Hidroxilasa/biosíntesis , Dopamina beta-Hidroxilasa/genética , Femenino , Masculino , Ratones , Ratones Transgénicos , Microinyecciones/métodos , Norepinefrina/genética , Trastornos Parkinsonianos/genética , Tirosina 3-Monooxigenasa/biosíntesis , Tirosina 3-Monooxigenasa/genética , Proteínas de Transporte Vesicular de Monoaminas/genética
10.
J Mol Biol ; 431(1): 111-121, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30098338

RESUMEN

Cell-type specific gene expression programs are tightly linked to epigenetic modifications on DNA and histone proteins. Here, we used a novel CRISPR-based epigenome editing approach to control gene expression spatially and temporally. We show that targeting dCas9-p300 complex to distal non-regulatory genomic regions reprograms the chromatin state of these regions into enhancer-like elements. Notably, through controlling the spatial distance of these induced enhancers (i-Enhancer) to the promoter, the gene expression amplitude can be tightly regulated. To better control the temporal persistence of induced gene expression, we integrated the auxin-inducible degron technology with CRISPR tools. This approach allows rapid depletion of the dCas9-fused epigenome modifier complex from the target site and enables temporal control over gene expression regulation. Using this tool, we investigated the temporal persistence of a locally edited epigenetic mark and its functional consequences. The tools and approaches presented here will allow novel insights into the mechanism of epigenetic memory and gene regulation from distal regulatory sites.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteína p300 Asociada a E1A/genética , Edición Génica/métodos , Línea Celular , Regulación de la Expresión Génica , Células HEK293 , Humanos , Regiones Promotoras Genéticas/genética , ARN Guía de Kinetoplastida/genética
11.
Cancer Res ; 79(18): 4599-4611, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31358529

RESUMEN

Chemoresistance is driven by unique regulatory networks in the genome that are distinct from those necessary for cancer development. Here, we investigate the contribution of enhancer elements to cisplatin resistance in ovarian cancers. Epigenome profiling of multiple cellular models of chemoresistance identified unique sets of distal enhancers, super-enhancers (SE), and their gene targets that coordinate and maintain the transcriptional program of the platinum-resistant state in ovarian cancer. Pharmacologic inhibition of distal enhancers through small-molecule epigenetic inhibitors suppressed the expression of their target genes and restored cisplatin sensitivity in vitro and in vivo. In addition to known drivers of chemoresistance, our findings identified SOX9 as a critical SE-regulated transcription factor that plays a critical role in acquiring and maintaining the chemoresistant state in ovarian cancer. The approach and findings presented here suggest that integrative analysis of epigenome and transcriptional programs could identify targetable key drivers of chemoresistance in cancers. SIGNIFICANCE: Integrative genome-wide epigenomic and transcriptomic analyses of platinum-sensitive and -resistant ovarian lines identify key distal regulatory regions and associated master regulator transcription factors that can be targeted by small-molecule epigenetic inhibitors.


Asunto(s)
Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/patología , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Epigenómica , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transcriptoma , Células Tumorales Cultivadas
12.
Genome Biol ; 19(1): 190, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404658

RESUMEN

BACKGROUND: The mutational processes underlying non-coding cancer mutations and their biological significance in tumor evolution are poorly understood. To get better insights into the biological mechanisms of mutational processes in breast cancer, we integrate whole-genome level somatic mutations from breast cancer patients with chromatin states and transcription factor binding events. RESULTS: We discover that a large fraction of non-coding somatic mutations in estrogen receptor (ER)-positive breast cancers are confined to ER binding sites. Notably, the highly mutated estrogen receptor binding sites are associated with more frequent chromatin loop contacts and the associated distal genes are expressed at higher level. To elucidate the functional significance of these non-coding mutations, we focus on two of the recurrently mutated estrogen receptor binding sites. Our bioinformatics and biochemical analysis suggest loss of DNA-protein interactions due to the recurrent mutations. Through CRISPR interference, we find that the recurrently mutated regulatory element at the LRRC3C-GSDMA locus impacts the expression of multiple distal genes. Using a CRISPR base editor, we show that the recurrent C→T conversion at the ZNF143 locus results in decreased TF binding, increased chromatin loop formation, and increased expression of multiple distal genes. This single point mutation mediates reduced response to estradiol-induced cell proliferation but increased resistance to tamoxifen-induced growth inhibition. CONCLUSIONS: Our data suggest that ER binding is associated with localized accumulation of somatic mutations, some of which affect chromatin architecture, distal gene expression, and cellular phenotypes in ER-positive breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Cromatina , Regulación Neoplásica de la Expresión Génica , Mutación , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transactivadores/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Antagonistas de Estrógenos/farmacología , Estrógenos/farmacología , Femenino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Unión Proteica , Tamoxifeno/farmacología , Transactivadores/genética , Células Tumorales Cultivadas
13.
J Clin Invest ; 128(11): 4787-4803, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30130256

RESUMEN

Renin cells are crucial for survival - they control fluid-electrolyte and blood pressure homeostasis, vascular development, regeneration, and oxygen delivery to tissues. During embryonic development, renin cells are progenitors for multiple cell types that retain the memory of the renin phenotype. When there is a threat to survival, those descendants are transformed and reenact the renin phenotype to restore homeostasis. We tested the hypothesis that the molecular memory of the renin phenotype resides in unique regions and states of these cells' chromatin. Using renin cells at various stages of stimulation, we identified regions in the genome where the chromatin is open for transcription, mapped histone modifications characteristic of active enhancers such as H3K27ac, and tracked deposition of transcriptional activators such as Med1, whose deletion results in ablation of renin expression and low blood pressure. Using the rank ordering of super-enhancers, epigenetic rewriting, and enhancer deletion analysis, we found that renin cells harbor a unique set of super-enhancers that determine their identity. The most prominent renin super-enhancer may act as a chromatin sensor of signals that convey the physiologic status of the organism, and is responsible for the transformation of renin cell descendants to the renin phenotype, a fundamental process to ensure homeostasis.


Asunto(s)
Epigénesis Genética , Código de Histonas , Histonas/metabolismo , Homeostasis , Subunidad 1 del Complejo Mediador/metabolismo , Renina/biosíntesis , Células Madre/metabolismo , Animales , Histonas/genética , Subunidad 1 del Complejo Mediador/genética , Ratones , Ratones Transgénicos , Renina/genética , Células Madre/citología
14.
Nat Commun ; 9(1): 4275, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30323222

RESUMEN

Predicting the response and identifying additional targets that will improve the efficacy of chemotherapy is a major goal in cancer research. Through large-scale in vivo and in vitro CRISPR knockout screens in pancreatic ductal adenocarcinoma cells, we identified genes whose genetic deletion or pharmacologic inhibition synergistically increase the cytotoxicity of MEK signaling inhibitors. Furthermore, we show that CRISPR viability scores combined with basal gene expression levels could model global cellular responses to the drug treatment. We develop drug response evaluation by in vivo CRISPR screening (DREBIC) method and validated its efficacy using large-scale experimental data from independent experiments. Comparative analyses demonstrate that DREBIC predicts drug response in cancer cells from a wide range of tissues with high accuracy and identifies therapeutic vulnerabilities of cancer-causing mutations to MEK inhibitors in various cancer types.


Asunto(s)
Antineoplásicos/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Técnicas Químicas Combinatorias , Sistemas de Liberación de Medicamentos , Técnicas de Inactivación de Genes , Pruebas Genéticas , Modelos Biológicos , Neoplasias Pancreáticas/genética , Animales , Puntos de Control del Ciclo Celular , Muerte Celular , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Ratones Desnudos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Reproducibilidad de los Resultados
15.
Neurotox Res ; 30(2): 251-67, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27126805

RESUMEN

Human cells are exposed to exogenous insults and continuous production of different metabolites. These insults and unwanted metabolic products might interfere with the stability of genomic DNA. Recently, many studies have demonstrated that different psychiatric disorders show substantially high levels of oxidative DNA damage in the brain accompanied with morphological and functional alterations. It reveals that damaged genomic DNA may contribute to the pathophysiology of these mental illnesses. In this article, we review the roles of oxidative damage and reduced antioxidant ability in some vastly studied psychiatric disorders and emphasize the inclusion of treatment options involving DNA repair. In addition, while most currently used antidepressants are based on the manipulation of the neurotransmitter regulation in managing different mental abnormalities, they are able to prevent or reverse neurotoxin-induced DNA damage. Therefore, it may be plausible to target on genomic DNA alterations for psychiatric therapies, which is of pivotal importance for future antipsychiatric drug development.


Asunto(s)
Daño del ADN , Trastornos Mentales/metabolismo , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Daño del ADN/efectos de los fármacos , Humanos , Trastornos Mentales/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA