Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 510(7504): 283-7, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24847881

RESUMEN

Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Lisina/metabolismo , MAP Quinasa Quinasa Quinasa 2/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Oncogénica p21(ras)/metabolismo , Adenocarcinoma/enzimología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , MAP Quinasa Quinasa Quinasa 2/química , Quinasas Quinasa Quinasa PAM/química , Metilación , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Oncogénica p21(ras)/genética , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas A-raf/metabolismo , Transducción de Señal
2.
Nature ; 492(7427): 108-12, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23051747

RESUMEN

In eukaryotes, post-translational modification of histones is critical for regulation of chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and is involved in repressing gene expression through methylation of histone H3 on lysine 27 (H3K27). EZH2 overexpression is implicated in tumorigenesis and correlates with poor prognosis in several tumour types. Additionally, somatic heterozygous mutations of Y641 and A677 residues within the catalytic SET domain of EZH2 occur in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. The Y641 residue is the most frequently mutated residue, with up to 22% of germinal centre B-cell DLBCL and follicular lymphoma harbouring mutations at this site. These lymphomas have increased H3K27 tri-methylation (H3K27me3) owing to altered substrate preferences of the mutant enzymes. However, it is unknown whether specific, direct inhibition of EZH2 methyltransferase activity will be effective in treating EZH2 mutant lymphomas. Here we demonstrate that GSK126, a potent, highly selective, S-adenosyl-methionine-competitive, small-molecule inhibitor of EZH2 methyltransferase activity, decreases global H3K27me3 levels and reactivates silenced PRC2 target genes. GSK126 effectively inhibits the proliferation of EZH2 mutant DLBCL cell lines and markedly inhibits the growth of EZH2 mutant DLBCL xenografts in mice. Together, these data demonstrate that pharmacological inhibition of EZH2 activity may provide a promising treatment for EZH2 mutant lymphoma.


Asunto(s)
Indoles/farmacología , Indoles/uso terapéutico , Linfoma Folicular/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Mutación/genética , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Piridonas/farmacología , Piridonas/uso terapéutico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Linfoma Folicular/enzimología , Linfoma Folicular/genética , Linfoma Folicular/patología , Linfoma de Células B Grandes Difuso/enzimología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Metilación/efectos de los fármacos , Ratones , Trasplante de Neoplasias , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Activación Transcripcional/efectos de los fármacos , Trasplante Heterólogo
3.
Biochemistry ; 55(11): 1584-99, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26745824

RESUMEN

In 1964, Alfrey and colleagues proposed that acetylation and methylation of histones may regulate RNA synthesis and described "the possibility that relatively minor modifications of histone structure, taking place on the intact protein molecule, offer a means of switching-on or off RNA synthesis at different loci along the chromosome" [Allfrey, V., Faulkner, R., and Mirsky, A. (1964) Proc. Natl. Acad. Sci. U.S.A. 51, 786]. Fifty years later, this prescient description provides a simple but conceptually accurate model for the biological role of histone post-translational modifications (PTMs). The basic unit of chromosomes is the nucleosome, with double-stranded DNA wrapped around a histone protein oligomer. The "tails" of histone proteins are post-translationally modified, which alters the physical properties of nucleosomes in a manner that impacts gene accessibility for transcription and replication. Enzymes that catalyze the addition and removal of histone PTMs, histone-modifying enzymes (HMEs), are present in large protein complexes, with DNA-binding proteins, ATP-dependent chromatin remodeling enzymes, and epigenetic reader proteins that bind to post-translationally modified histone residues [Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K., and Schapira, M. (2012) Nat. Rev. Drug Discovery 11, 384-400]. The activity of HME complexes is coordinated with that of other chromatin-associated complexes that, together, regulate gene transcription, DNA repair, and DNA replication. In this context, the enzymes that catalyze addition and removal of histone PTMs are an essential component of the highly regulated mechanism for accessing compacted DNA. To fully understand the function of HMEs, the structure of nucleosomes, their natural substrate, will be described. Each major class of HMEs subsequently will be discussed with regard to its biochemistry, enzymatic mechanism, and biological function in the context of a prototypical HME complex.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Histonas/metabolismo , Nucleosomas/enzimología , Procesamiento Proteico-Postraduccional/fisiología , Transcripción Genética/fisiología , Animales , ADN/metabolismo , Humanos
4.
Blood ; 123(5): 697-705, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24335499

RESUMEN

The bromodomain and extraterminal (BET) protein BRD2-4 inhibitors hold therapeutic promise in preclinical models of hematologic malignancies. However, translation of these data to molecules suitable for clinical development has yet to be accomplished. Herein we expand the mechanistic understanding of BET inhibitors in multiple myeloma by using the chemical probe molecule I-BET151. I-BET151 induces apoptosis and exerts strong antiproliferative effect in vitro and in vivo. This is associated with contrasting effects on oncogenic MYC and HEXIM1, an inhibitor of the transcriptional activator P-TEFb. I-BET151 causes transcriptional repression of MYC and MYC-dependent programs by abrogating recruitment to the chromatin of the P-TEFb component CDK9 in a BRD2-4-dependent manner. In contrast, transcriptional upregulation of HEXIM1 is BRD2-4 independent. Finally, preclinical studies show that I-BET762 has a favorable pharmacologic profile as an oral agent and that it inhibits myeloma cell proliferation, resulting in survival advantage in a systemic myeloma xenograft model. These data provide a strong rationale for extending the clinical testing of the novel antimyeloma agent I-BET762 and reveal insights into biologic pathways required for myeloma cell proliferation.


Asunto(s)
Antineoplásicos/uso terapéutico , Benzodiazepinas/uso terapéutico , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzodiazepinas/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Ratones , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción , Activación Transcripcional/efectos de los fármacos , Células Tumorales Cultivadas
5.
Proc Natl Acad Sci U S A ; 109(8): 2989-94, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22323599

RESUMEN

Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 k(cat)/K(m) ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2.


Asunto(s)
Alanina/genética , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Linfoma de Células B/enzimología , Linfoma de Células B/genética , Lisina/metabolismo , Mutación/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Línea Celular Tumoral , Análisis Mutacional de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica , Glicina/genética , Heterocigoto , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Complejo Represivo Polycomb 2 , Especificidad por Sustrato , Factores de Transcripción/química , Factores de Transcripción/metabolismo
6.
J Med Chem ; 66(15): 10473-10496, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37427891

RESUMEN

TYK2 is a key mediator of IL12, IL23, and type I interferon signaling, and these cytokines have been implicated in the pathogenesis of multiple inflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, lupus, and inflammatory bowel diseases. Supported by compelling data from human genome-wide association studies and clinical results, TYK2 inhibition through small molecules is an attractive therapeutic strategy to treat these diseases. Herein, we report the discovery of a series of highly selective pseudokinase (Janus homology 2, JH2) domain inhibitors of TYK2 enzymatic activity. A computationally enabled design strategy, including the use of FEP+, was instrumental in identifying a pyrazolo-pyrimidine core. We highlight the utility of computational physics-based predictions used to optimize this series of molecules to identify the development candidate 30, a potent, exquisitely selective cellular TYK2 inhibitor that is currently in Phase 2 clinical trials for the treatment of psoriasis and psoriatic arthritis.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Psoriasis , Humanos , TYK2 Quinasa , Estudio de Asociación del Genoma Completo , Enfermedades Autoinmunes/tratamiento farmacológico , Psoriasis/tratamiento farmacológico
7.
Biochem J ; 436(2): 363-9, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21410436

RESUMEN

The HIF (hypoxia-inducible factor) plays a central regulatory role in oxygen homoeostasis. HIF proteins are regulated by three Fe(II)- and α-KG (α-ketoglutarate)-dependent prolyl hydroxylase enzymes [PHD (prolyl hydroxylase domain) isoenzymes 1-3 or PHD1, PHD2 and PHD3] and one asparaginyl hydroxylase [FIH (factor inhibiting HIF)]. The prolyl hydroxylases control the abundance of HIF through oxygen-dependent hydroxylation of specific proline residues in HIF proteins, triggering subsequent ubiquitination and proteasomal degradation. FIH inhibits the HIF transcription activation through asparagine hydroxylation. Understanding the precise roles and regulation of these four Fe(II)- and α-KG-dependent hydroxylases is of great importance. In the present paper, we report the biochemical characterization of the first HIF protein substrates that contain the CODDD (C-terminal oxygen-dependent degradation domain), the NODDD (N-terminal oxygen-dependent degradation domain) and the CAD (C-terminal transactivation domain). Using LC-MS/MS (liquid chromatography-tandem MS) detection, we show that all three PHD isoenzymes have a strong preference for hydroxylation of the CODDD proline residue over the NODDD proline residue and the preference is observed for both HIF1α and HIF2α protein substrates. In addition, steady-state kinetic analyses show differential substrate selectivity for HIF and α-KG in reference to the three PHD isoforms and FIH.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Sitios de Unión , Humanos , Hidroxilación , Isoenzimas/química , Isoenzimas/metabolismo , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/metabolismo , Especificidad por Sustrato
8.
SLAS Discov ; 27(5): 306-313, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35513262

RESUMEN

The dysregulation of the PRC1/2 complex plays a key role in lineage plasticity in prostate cancer and may be required to maintain neuroendocrine phenotype. [1] CBX2, a key component of the canonical PRC1 complex, is an epigenetic reader, recognizing trimethylated lysine on histone 3 (H3K27me3) [2] and is overexpressed in metastatic neuroendocrine prostate cancer. [3,4] We implemented a screening strategy using nucleosome substrates to identify inhibitors of CBX2 binding to chromatin. Construct design and phosphorylation state of CBX2 were critical for successful implementation and execution of an HTS library screen. A rigorous screening funnel including counter and selectivity assays allowed us to quickly focus on true positive hit matter. Two distinct non-peptide-like chemotypes were identified and confirmed in orthogonal biochemical and biophysical assays demonstrating disruption of CBX2 binding to nucleosomes and direct binding to purified CBX2, respectively.


Asunto(s)
Complejo Represivo Polycomb 1 , Neoplasias de la Próstata , Núcleo Celular/metabolismo , Cromatina , Histonas/metabolismo , Humanos , Masculino , Complejo Represivo Polycomb 1/genética , Neoplasias de la Próstata/metabolismo
9.
Biochem Biophys Res Commun ; 406(2): 194-9, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21300025

RESUMEN

The PI3K signaling pathway is activated in a broad spectrum of human cancers, either directly by genetic mutation or indirectly via activation of receptor tyrosine kinases or inactivation of the PTEN tumor suppressor. The key nodes of this pathway have emerged as important therapeutic targets for the treatment of cancer. In this study, we show that (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea, is an ATP-competitive inhibitor of both phosphoinositide-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) with K(i) values of 380 and 320nM respectively. The potency of EGCG against PI3K and mTOR is within physiologically relevant concentrations. In addition, EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231 and A549 cells. Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site, agreeing with the finding that EGCG competes for ATP binding. Our results suggest another important molecular mechanism for the anticancer activities of EGCG.


Asunto(s)
Antineoplásicos/farmacología , Catequina/análogos & derivados , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Té/química , Catequina/química , Catequina/metabolismo , Catequina/farmacología , Proliferación Celular/efectos de los fármacos , Células HEK293 , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
10.
Arch Biochem Biophys ; 503(2): 207-12, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20816748

RESUMEN

USP7, also known as the hepes simplex virus associated ubiquitin-specific protease (HAUSP), deubiquitinates both mdm2 and p53, and plays an important role in regulating the level and activity of p53. Here, we report that deletion of the TRAF-like domain at the N-terminus of USP7, previously reported to contain the mdm2/p53 binding site, has no effect on USP7 mediated deubiquitination of Ub(n)-mdm2 and Ub(n)-p53. Amino acids 208-1102 were identified to be the minimal length of USP7 that retains proteolytic activity, similar to full length enzyme, towards not only a truncated model substrate Ub-AFC, but also Ub(n)-mdm2, Ub(n)-p53. In contrast, the catalytic domain of USP7 (amino acids 208-560) has 50-700 fold less proteolytic activity towards different substrates. Moreover, inhibition of the catalytic domain of USP7 by Ubal is also different from the full length or TRAF-like domain deleted proteins. Using glutathione pull-down methods, we demonstrate that the C-terminal domain of USP7 contains additional binding sites, a.a. 801-1050 and a.a. 880-1050 for mdm2 and p53, respectively. The additional USP7 binding site on mdm2 is mapped to be the C-terminal RING finger domain (a.a. 425-491). We propose that the C-terminal domain of USP7 is responsible for maintaining the active conformation for catalysis and inhibitor binding, and contains the prime side of the proteolytic active site.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2/química , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina Tiolesterasa/química , Secuencias de Aminoácidos/genética , Sitios de Unión/genética , Dominio Catalítico/genética , Genes p53 , Humanos , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteína p53 Supresora de Tumor/genética , Peptidasa Específica de Ubiquitina 7 , Ubiquitinación
11.
Biochem J ; 417(1): 355-60, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18767990

RESUMEN

Aurora kinases are a family of serine/threonine protein kinases that play essential roles in mitosis and cytokinesis. AurB (Aurora B kinase) has shown a clear link to cancer and is being pursued as an attractive cancer target. Multiple small molecules targeting AurB have entered the clinic for the treatment of cancer. A protein cofactor, INCENP (inner centromere protein), regulates the cellular localization and activation of AurB. In the present study, we examined the effect of INCENP on the activation kinetics of AurB and also elucidated the kinetic mechanism of AurB-catalysed substrate phosphorylation. We have concluded that: (i) substoichoimetric concentrations of INCENP are sufficient for AurB autophosphorylation at the activation loop residue Thr(232), and hence INCENP plays a catalytic role in AurB autophosphorylation; (ii) AurB/INCENP-catalysed phosphorylation of a peptide substrate proceeds through a rapid equilibrium random Bi Bi kinetic mechanism; and (iii) INCENP has relatively minor effects on the specific activity of AurB using a peptide substrate when compared with its role in AurB autoactivation. These results indicate that the effects of INCENP, and probably accessory proteins in general, may differ when enzymes are acting on different downstream targets.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa B , Aurora Quinasas , Catálisis , Línea Celular , Activación Enzimática , Humanos , Cinética , Mitosis , Fosforilación , Unión Proteica
12.
Biochem J ; 420(2): 259-65, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19284385

RESUMEN

The Aurora kinases AurA, B and C are serine/threonine protein kinases that play essential roles in mitosis and cytokinesis. Among them, AurB is required for maintaining proper chromosome alignment, separation and segregation during mitosis, and regulating a number of critical processes involved in cytokinesis. AurB overexpression has been observed in a variety of cancer cell lines, and inhibition of AurB has been shown to induce tumour regression in mouse xenograft models. In the present study we report the enzymatic characterization of a potent and selective AurB/AurC inhibitor. GSK1070916 is a reversible and ATP-competitive inhibitor of the AurB-INCENP (inner centromere protein) enzyme. It selectively inhibits AurB-INCENP (K(i)*=0.38+/-0.29 nM) and AurC-INCENP (K(i)*=1.5+/-0.4 nM) over AurA-TPX2 (target protein for Xenopus kinesin-like protein 2) (K(i)=490+/-60 nM). Inhibition of AurB-INCENP and AurC-INCENP is time-dependent, with an enzyme-inhibitor dissociation half-life of >480 min and 270+/-28 min respectively. The extremely slow rate of dissociation from the AurB and AurC enzymes distinguishes GSK1070916 from two other Aurora inhibitors in the clinic, AZD1152 and VX-680 (also known as MK-0457).


Asunto(s)
Inhibidores Enzimáticos/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Adenosina Trifosfato/farmacología , Secuencia de Aminoácidos , Aurora Quinasa B , Aurora Quinasa C , Aurora Quinasas , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Cinética , Datos de Secuencia Molecular , Organofosfatos/farmacología , Piperazinas/farmacología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Quinazolinas/farmacología
13.
J Pharmacol Exp Ther ; 329(3): 995-1005, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19304771

RESUMEN

The Smoothened receptor (Smo) mediates hedgehog (Hh) signaling critical for development, cell growth, and migration, as well as stem cell maintenance. Aberrant Hh signaling pathway activation has been implicated in a variety of cancers, and small-molecule antagonists of Smo have entered human clinical trials for the treatment of cancer. Here, we report the biochemical characterization of allosteric interactions of agonists and antagonists for Smo. Binding of two radioligands, [(3)H]3-chloro-N-[trans-4-(methylamino)cyclohexyl]-N-{[3-(4-pyridinyl)-phenyl]methyl}-1-benzothiophene-2-carboxamide (SAG-1.3) (agonist) and [(3)H]cyclopamine (antagonist), was characterized using human Smo expressed in human embryonic kidney 293F membranes. We observed full displacement of [(3)H]cyclopamine by all Smo agonist and antagonist ligands examined. N-[(1E)-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]-4-(phenylmethyl)-1-piperazinamine (SANT-1), an antagonist, did not fully inhibit the binding of [(3)H]SAG-1.3. In a functional cell-based beta-lactamase reporter gene assay, SANT-1 and N-[3-(1H-benzimidazol-2-yl)-4-chlorophenyl]-3,4,5-tris(ethyloxy)-benzamide (SANT-2) fully inhibited 3-chloro-4,7-difluoro-N-[trans-4-(methylamino)cyclohexyl]-N-{[3-(4-pyridinyl)phenyl]methyl}-1-benzothiophene-2-carboxamide (SAG-1.5)-induced Hh pathway activation. Detailed "Schild-type" radioligand binding analysis with [(3)H]SAG-1.3 revealed that two structurally distinct Smoothened receptor antagonists, SANT-1 and SANT-2, bound in a manner consistent with that of allosteric modulation. Our mechanism of action characterization of radioligand binding to Smo combined with functional data provides a better understanding of small-molecule interactions with Smo and their influence on the Hh pathway.


Asunto(s)
Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Anilidas , Animales , Benzamidas/química , Benzamidas/metabolismo , Bencimidazoles/química , Bencimidazoles/metabolismo , Sitios de Unión , Unión Competitiva , Línea Celular , Membrana Celular/metabolismo , Ciclohexilaminas/química , Ciclohexilaminas/metabolismo , Genes Reporteros/genética , Humanos , Cinética , Ratones , Estructura Molecular , Morfolinas/química , Morfolinas/metabolismo , Células 3T3 NIH , Piperazinas/química , Piperazinas/metabolismo , Purinas/química , Purinas/metabolismo , Pirazoles/química , Pirazoles/metabolismo , Piridinas , Ensayo de Unión Radioligante , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Receptor Smoothened , Tiofenos/química , Tiofenos/metabolismo , Tomatina/análogos & derivados , Tomatina/química , Tomatina/metabolismo , Transfección , Alcaloides de Veratrum/química , Alcaloides de Veratrum/metabolismo , beta-Lactamasas/metabolismo
14.
Biochem J ; 409(2): 519-24, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17877460

RESUMEN

The PIK3CA gene, encoding the p110alpha catalytic subunit of Class IA PI3Ks (phosphoinositide 3-kinases), is frequently mutated in many human tumours. The three most common tumour-derived alleles of p110alpha, H1047R, E542K and E545K, were shown to potently activate PI3K signalling in human epithelial cells. In the present study, we examine the biochemical activity of the recombinantly purified PI3K oncogenic mutants. The kinetic characterizations of the wt (wild-type) and the three 'hot spot' PI3K mutants show that the mutants all have approx. 2-fold increase in lipid kinase activities. Interestingly, the phosphorylated IRS-1 (insulin receptor substrate-1) protein shows activation of the lipid kinase activity for the wt and H1047R but not E542K and E545K PI3Kalpha, suggesting that these mutations represent different mechanisms of lipid kinase activation and hence transforming activity in cancer cells.


Asunto(s)
Oncogenes , Fosfatidilinositol 3-Quinasas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfato/metabolismo , Alelos , Dominio Catalítico , Fosfatidilinositol 3-Quinasa Clase I , Activación Enzimática , Humanos , Proteínas Sustrato del Receptor de Insulina , Cinética , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Células Tumorales Cultivadas
15.
Protein Sci ; 17(1): 66-71, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18042679

RESUMEN

Matrix metalloproteinase 13 (MMP13) is a key enzyme implicated in the degradation of the extracellular matrix in osteoarthritis. Clinical administration of broad spectrum MMP inhibitors such as marimastat has been implicated in severe musculo-skeletal side effects. Consequently, research has been focused on designing inhibitors that selectively inhibit MMP13, thereby circumventing musculo-skeletal toxicities. A series of pyrimidine dicarboxamides were recently shown to be highly selective inhibitors of MMP13 with a novel binding mode. We have applied a molecular ruler to this exosite by dual inhibition studies involving a potent dicarboxamide in the presence of two metal chelators of different sizes. A larger hydroxamate mimic overlaps and antagonizes binding of the dicarboxamide to the exosite whereas the much smaller acetohydroxamate synergizes with the dicarboxamide. These studies elucidate the steric requirement for compounds that fit exclusively into the active site, a mandate for generating highly selective MMP13 inhibitors.


Asunto(s)
Metaloproteinasa 13 de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz , Inhibidores Tisulares de Metaloproteinasas/química , Sitios de Unión , Precursores Enzimáticos/antagonistas & inhibidores , Precursores Enzimáticos/química , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Conformación Proteica , Inhibidores Tisulares de Metaloproteinasas/farmacología
16.
Biochemistry ; 47(20): 5481-92, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18412369

RESUMEN

The formation and duration of binary receptor-ligand complexes are fundamental to many physiologic processes. Most often, the effectiveness of interaction between a receptor and its ligand is quantified in terms of closed system, equilibrium affinity measurements, such as IC50 and Kd. In the context of in vivo biology, however, the extent and duration of responses to receptor-ligand interactions depend greatly on the time period over which the ligand is in residence on its receptor. Here we define receptor-ligand complex residence time in quantitative terms and describe its significance to biological function. Examples of the importance of residence time are presented for natural ligands of different receptor types. The impact of residence time on the optimization of potential ligands as drugs for human medicine is also described.


Asunto(s)
Biología , Humanos , Cinética , Ligandos , Unión Proteica , Factores de Tiempo
17.
Biochemistry ; 47(43): 11165-7, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18834144

RESUMEN

Prolyl hydroxylase domain proteins (PHD isozymes 1-3) regulate levels of the alpha-subunit of the hypoxia inducible factor (HIF) through proline hydroxylation, earmarking HIFalpha for proteosome-mediated degradation. Under hypoxic conditions, HIF stabilization leads to enhanced transcription and regulation of a multitude of processes, including erythropoiesis. Herein, we examine the biochemical characterization of PHD2 variants, Arg371His and Pro317Arg, identified from patients with familial erythrocytosis. The variants display differential effects on catalytic rate and substrate binding, implying that partial inhibition or selective inhibition with regard to HIFalpha isoforms of PHD2 could result in the phenotype displayed by patients with familial erythrocytosis.


Asunto(s)
Variación Genética , Policitemia/genética , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/genética , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Arginina/metabolismo , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Histidina/metabolismo , Humanos , Enlace de Hidrógeno , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Policitemia/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Prolina/química , Prolina/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
18.
J Am Chem Soc ; 130(24): 7584-91, 2008 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-18491908

RESUMEN

Human kinesin spindle protein (KSP)/hsEg5, a member of the kinesin-5 family, is essential for mitotic spindle assembly in dividing human cells and is required for cell cycle progression through mitosis. Inhibition of the ATPase activity of KSP leads to cell cycle arrest during mitosis and subsequent cell death. Ispinesib (SB-715992), a potent and selective inhibitor of KSP, is currently in phase II clinical trials for the treatment of multiple tumor types. Mutations that attenuate Ispinesib binding to KSP in vitro have been identified, highlighting the need for inhibitors that target different binding sites and inhibit KSP activity by novel mechanisms. We report here a small-molecule modulator, KSPA-1, that activates KSP-catalyzed ATP hydrolysis in the absence of microtubules yet inhibits microtubule-stimulated ATP hydrolysis by KSP. KSPA-1 inhibits cell proliferation and induces monopolar-spindle formation in tumor cells. Results from kinetic analyses, microtubule (MT) binding competition assays, and hydrogen/deuterium-exchange studies show that KSPA-1 does not compete directly for microtubule binding. Rather, this compound acts by driving a conformational change in the KSP motor domain and disrupts productive ATP turnover stimulated by MT. These findings provide a novel mechanism for targeting KSP and perhaps other mitotic kinesins.


Asunto(s)
Adenosina Trifosfato/metabolismo , Hidrocarburos Fluorados/farmacología , Cinesinas/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Pirroles/farmacología , Adenosina Difosfato/metabolismo , Unión Competitiva , Línea Celular , Proliferación Celular/efectos de los fármacos , Deuterio/metabolismo , Humanos , Hidrógeno/metabolismo , Hidrólisis/efectos de los fármacos , Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Ligandos , Maleatos/farmacología , Microtúbulos/metabolismo , Huso Acromático/efectos de los fármacos
19.
Anal Biochem ; 383(2): 311-5, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18814837

RESUMEN

Differential activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway has been linked to cancer. Activation occurs through gene amplification and activating mutations. High-frequency mutations in the gene encoding the p110alpha catalytic subunit of PI3K (PIK3CA) have been observed in a variety of tumors including colon, brain, breast, ovarian, and gastric. Inhibition of PI3K kinase activity may provide a specific way to treat multiple types of human cancer. A scintillation proximity assay (SPA) was developed to detect phosphatidylinositol 3-kinase catalytic activity. Using this assay format, steady-state kinetic parameters were compared for the PI3K class IA enzymes p110alpha, p110beta, and p110delta, each coexpressed with the regulatory subunit p85alpha or splice variant p55alpha. Inhibition by the natural product wortmannin and LY294002 was detected with potencies consistent with alternate assay formats. Other biochemical assay formats have been described for phosphoinositide 3-kinases but each has its unique limitations. The simple, inexpensive, sensitive high-throughput nature of the SPA format has advanced our knowledge of isoform-specific enzymology and will facilitate the discovery of novel PI3K inhibitors.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Subunidades de Proteína/metabolismo , Conteo por Cintilación/métodos , Biocatálisis/efectos de los fármacos , Productos Biológicos/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Humanos , Concentración de Iones de Hidrógeno , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Microesferas , Inhibidores de las Quinasa Fosfoinosítidos-3 , Subunidades de Proteína/antagonistas & inhibidores , Volumetría
20.
Oncogenesis ; 7(4): 35, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29674704

RESUMEN

BET inhibitors exhibit broad activity in cancer models, making predictive biomarkers challenging to define. Here we investigate the biomarkers of activity of the clinical BET inhibitor GSK525762 (I-BET; I-BET762) across cancer cell lines and demonstrate that KRAS mutations are novel resistance biomarkers. This finding led us to combine BET with RAS pathway inhibition using MEK inhibitors to overcome resistance, which resulted in synergistic effects on growth and survival in RAS pathway mutant models as well as a subset of cell lines lacking RAS pathway mutations. GSK525762 treatment up-regulated p-ERK1/2 levels in both RAS pathway wild-type and mutant cell lines, suggesting that MEK/ERK pathway activation may also be a mechanism of adaptive BET inhibitor resistance. Importantly, gene expression studies demonstrated that the BET/MEK combination uniquely sustains down-regulation of genes associated with mitosis, leading to prolonged growth arrest that is not observed with either single agent therapy. These studies highlight a potential to enhance the clinical benefit of BET and MEK inhibitors and provide a strong rationale for clinical evaluation of BET/MEK combination therapies in cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA