Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(41): 28428-28433, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27471170

RESUMEN

We have developed a framework for using temperature dependent static and dynamic photoluminescence (PL) of hybrid organic-inorganic perovskites (PVSKs) to characterize lattice defects in thin films, based on the presence of nanodomains at low temperature. Our high-stability PVSK films are fabricated using a novel continuous liquid interface propagation technique, and in the tetragonal phase (T > 120 K), they exhibit bi-exponential recombination from free charge carriers with an average PL lifetime of ∼200 ns. Below 120 K, the emergence of the orthorhombic phase is accompanied by a reduction in lifetimes by an order of magnitude, which we establish to be the result of a crossover from free carrier to exciton-dominated radiative recombination. Analysis of the PL as a function of excitation power at different temperatures provides direct evidence that the exciton binding energy is different in the two phases, and using these results, we present a theoretical approach to estimate this variable binding energy. Our findings explain this anomalous low temperature behavior for the first time, attributing it to an inherent fundamental property of the hybrid PVSKs that can be used as an effective probe of thin film quality.

2.
Proc Natl Acad Sci U S A ; 107(46): 19673-8, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21041676

RESUMEN

The method employed for depositing nanostructures of conducting polymers dictates potential uses in a variety of applications such as organic solar cells, light-emitting diodes, electrochromics, and sensors. A simple and scalable film fabrication technique that allows reproducible control of thickness, and morphological homogeneity at the nanoscale, is an attractive option for industrial applications. Here we demonstrate that under the proper conditions of volume, doping, and polymer concentration, films consisting of monolayers of conducting polymer nanofibers such as polyaniline, polythiophene, and poly(3-hexylthiophene) can be produced in a matter of seconds. A thermodynamically driven solution-based process leads to the growth of transparent thin films of interfacially adsorbed nanofibers. High quality transparent thin films are deposited at ambient conditions on virtually any substrate. This inexpensive process uses solutions that are recyclable and affords a new technique in the field of conducting polymers for coating large substrate areas.


Asunto(s)
Conductividad Eléctrica , Polímeros/síntesis química , Compuestos de Anilina/química , Electrones , Nanofibras/química , Nanofibras/ultraestructura , Oxidación-Reducción , Polímeros/química , Espectrofotometría Ultravioleta
3.
J Am Chem Soc ; 133(24): 9262-5, 2011 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-21615169

RESUMEN

Graphene oxide (GO) can be viewed as a two-dimensional, random diblock copolymer with distributed nanosize graphitic patches and highly oxidized domains, thus capable of guiding the assembly of other materials through both π-π stacking and hydrogen bonding. Upon mixing GO and conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in water, a dispersion with dramatically increased viscosity is obtained, which turns into sticky thin films upon casting. Surprisingly, the insulating GO makes PEDOT much more conductive by altering its chain conformation and morphology. The GO/PEDOT gel can function as a metal-free solder for creating mechanical and electrical connections in organic optoelectronic devices. As a proof-of-concept, polymer tandem solar cells have been fabricated by a direct adhesive lamination process enabled by the sticky GO/PEDOT film. The sticky interconnect can greatly simplify the fabrication of organic tandem architectures, which has been quite challenging via solution processing. Thus, it could facilitate the construction of high-efficiency tandem solar cells with different combinations of solution-processable materials.

4.
J Am Chem Soc ; 133(13): 4940-7, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21391674

RESUMEN

Heterojunctions between different graphitic nanostructures, including fullerenes, carbon nanotubes and graphene-based sheets, have attracted significant interest for light to electrical energy conversion. Because of their poor solubility, fabrication of such all-carbon nanocomposites typically involves covalently linking the individual constituents or the extensive surface functionalization to improve their solvent processability for mixing. However, such strategies often deteriorate or contaminate the functional carbon surfaces. Here we report that fullerenes, pristine single walled carbon nanotubes, and graphene oxide sheets can be conveniently coassembled in water to yield a stable colloidal dispersion for thin film processing. After thermal reduction of graphene oxide, a solvent-resistant photoconductive hybrid of fullerene-nanotube-graphene was obtained with on-off ratio of nearly 6 orders of magnitude. Photovoltaic devices made with the all-carbon hybrid as the active layer and an additional fullerene block layer showed unprecedented photovoltaic responses among all known all-carbon-based materials with an open circuit voltage of 0.59 V and a power conversion efficiency of 0.21%. The ease of making such surfactant-free, water-processed, carbon thin films could lead to their wide applications in organic optoelectronic devices.


Asunto(s)
Fulerenos/química , Grafito/química , Nanoestructuras/química , Nanotubos de Carbono/química , Agua/química , Tamaño de la Partícula , Procesos Fotoquímicos , Propiedades de Superficie
5.
J Am Chem Soc ; 132(50): 17667-9, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21105686

RESUMEN

Graphene oxide (GO) nanocolloids-sheets with lateral dimension smaller than 100 nm-were synthesized by chemical exfoliation of graphite nanofibers, in which the graphene planes are coin-stacked along the length of the nanofibers. Since the upper size limit is predetermined by the diameter of the nanofiber precursor, the size distribution of the GO nanosheets is much more uniform than that of common GO synthesized from graphite powders. The size can be further tuned by the oxidation time. Compared to the micrometer-sized, regular GO sheets, nano GO has very similar spectroscopic characteristics and chemical properties but very different solution properties, such as surface activity and colloidal stability. Due to higher charge density originating from their higher edge-to-area ratios, aqueous GO nanocolloids are significantly more stable. Dispersions of GO nanocolloids can sustain high-speed centrifugation and remain stable even after chemical reduction, which would result in aggregates for regular GO. Therefore, nano GO can act as a better dispersing agent for insoluble materials (e.g., carbon nanotubes) in water, creating a more stable colloidal dispersion.

6.
Nano Lett ; 9(5): 1949-55, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19361207

RESUMEN

We report the formation of a nanocomposite comprised of chemically converted graphene and carbon nanotubes. Our solution-based method does not require surfactants, thus preserving the intrinsic electronic and mechanical properties of both components, delivering 240 ohms/square at 86% transmittance. This low-temperature process is completely compatible with flexible substrates and does not require a sophisticated transfer process. We believe that this technology is inexpensive, is massively scalable, and does not suffer from several shortcomings of indium tin oxide. A proof-of-concept application in a polymer solar cell with power conversion efficiency of 0.85% is demonstrated. Preliminary experiments in chemical doping are presented and show that optimization of this material is not limited to improvements in layer morphology.

7.
ACS Nano ; 14(6): 7308-7318, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32478507

RESUMEN

Metallic molybdenum disulfide (MoS2), e.g., 1T phase, is touted as a highly promising material for energy storage that already displays a great capacitive performance. However, due to its tendency to aggregate and restack, it remains a formidable challenge to assemble a high-performance electrode without scrambling the intrinsic structure. Here, we report an electrohydrodynamic-assisted fabrication of 3D crumpled MoS2 (c-MoS2) and its formation of an additive-free stable ink for scalable inkjet printing. The 3D c-MoS2 powders exhibited a high concentration of metallic 1T phase and an ultrathin structure. The aggregation-resistant properties of the 3D crumpled particles endow the electrodes with open space for electrolyte ion transport. Importantly, we experimentally discovered and theoretically validated that 3D 1T c-MoS2 enables an extended electrochemical stable working potential range and enhanced capacitive performance in a bivalent magnesium-ion aqueous electrolyte. With reduced graphene oxide (rGO) as the positive electrode material, we inkjet-printed 96 rigid asymmetric micro-supercapacitors (AMSCs) on a 4-in. Si/SiO2 wafer and 100 flexible AMSCs on photo paper. These AMSCs exhibited a wide stable working voltage of 1.75 V and excellent capacitance retention of 96% over 20 000 cycles for a single device. Our work highlights the promise of 3D layered materials as well-dispersed functional materials for large-scale printed flexible energy storage devices.

8.
Chem Rev ; 110(1): 132-45, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19610631
10.
ACS Nano ; 4(7): 3845-52, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20586422

RESUMEN

Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24 degrees 2theta (3.4 A), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications.


Asunto(s)
Carbono/química , Compuestos Orgánicos/química , Óxidos/química , Solventes/química , Temperatura , Conductividad Eléctrica , Hidrazinas/química , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Difracción de Rayos X
11.
Nat Nanotechnol ; 4(1): 25-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19119278

RESUMEN

The electronic properties of graphene, such as high charge carrier concentrations and mobilities, make it a promising candidate for next-generation nanoelectronic devices. In particular, electrons and holes can undergo ballistic transport on the sub-micrometre scale in graphene and do not suffer from the scale limitations of current MOSFET technologies. However, it is still difficult to produce single-layer samples of graphene and bulk processing has not yet been achieved, despite strenuous efforts to develop a scalable production method. Here, we report a versatile solution-based process for the large-scale production of single-layer chemically converted graphene over the entire area of a silicon/SiO(2) wafer. By dispersing graphite oxide paper in pure hydrazine we were able to remove oxygen functionalities and restore the planar geometry of the single sheets. The chemically converted graphene sheets that were produced have the largest area reported to date (up to 20 x 40 microm), making them far easier to process. Field-effect devices have been fabricated by conventional photolithography, displaying currents that are three orders of magnitude higher than previously reported for chemically produced graphene. The size of these sheets enables a wide range of characterization techniques, including optical microscopy, scanning electron microscopy and atomic force microscopy, to be performed on the same specimen.

12.
ACS Nano ; 3(2): 301-6, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19236064

RESUMEN

We report the development of useful chemical sensors from chemically converted graphene dispersions using spin coating to create single-layer films on interdigitated electrode arrays. Dispersions of graphene in anhydrous hydrazine are formed from graphite oxide. Preliminary results are presented on the detection of NO(2), NH(3), and 2,4-dinitrotoluene using this simple and scalable fabrication method for practical devices. Current versus voltage curves are linear and ohmic in all cases, studied independent of metal electrode or presence of analytes. The sensor response is consistent with a charge transfer mechanism between the analyte and graphene with a limited role of the electrical contacts. A micro hot plate sensor substrate is also used to monitor the temperature dependence of the response to nitrogen dioxide. The results are discussed in light of recent literature on carbon nanotube and graphene sensors.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Grafito/química , Dinitrobencenos/análisis , Electrodos , Sustancias Explosivas/análisis , Oro/química , Hidrazinas/química , Microscopía Electrónica de Rastreo , Dióxido de Nitrógeno/análisis , Compuestos de Amonio Cuaternario/análisis , Espectrometría Raman , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA