Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 173, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597967

RESUMEN

Heterozygous mutations in any of three major genes, BRCA1, BRCA2 and PALB2, are associated with high-risk hereditary breast cancer susceptibility frequently seen as familial disease clustering. PALB2 is a key interaction partner and regulator of several vital cellular activities of BRCA1 and BRCA2, and is thus required for DNA damage repair and alleviation of replicative and oxidative stress. Little is however known about how PALB2-deficiency affects cell function beyond that, especially in the three-dimensional setting, and also about its role during early steps of malignancy development. To answer these questions, we have generated biologically relevant MCF10A mammary epithelial cell lines with mutations that are comparable to certain clinically important PALB2 defects. We show in a non-cancerous background how both mono- and biallelically PALB2-mutated cells exhibit gross spontaneous DNA damage and mitotic aberrations. Furthermore, PALB2-deficiency disturbs three-dimensional spheroid morphology, increases the migrational capacity and invasiveness of the cells, and broadly alters their transcriptome profiles. TGFß signaling and KRT14 expression are enhanced in PALB2-mutated cells and their inhibition and knock down, respectively, lead to partial restoration of cell functions. KRT14-positive cells are also more abundant with DNA damage than KRT14-negative cells. The obtained results indicate comprehensive cellular changes upon PALB2 mutations, even in the presence of half dosage of wild type PALB2 and demonstrate how PALB2 mutations may predispose their carriers to malignancy.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Reparación del ADN , Células Epiteliales , Mama , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética
2.
Hum Mol Genet ; 28(24): 4148-4160, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31630195

RESUMEN

Whilst heterozygous germline mutations in the ABRAXAS1 gene have been associated with a hereditary predisposition to breast cancer, their effect on promoting tumourigenesis at the cellular level has not been explored. Here, we demonstrate in patient-derived cells that the Finnish ABRAXAS1 founder mutation (c.1082G > A, Arg361Gln), even in the heterozygous state leads to decreased BRCA1 protein levels as well as reduced nuclear localization and foci formation of BRCA1 and CtIP. This causes disturbances in basal BRCA1-A complex localization, which is reflected by a restraint in error-prone DNA double-strand break repair pathway usage, attenuated DNA damage response and deregulated G2-M checkpoint control. The current study clearly demonstrates how the Finnish ABRAXAS1 founder mutation acts in a dominant-negative manner on BRCA1 to promote genome destabilization in heterozygous carrier cells.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Proteínas Portadoras/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Mutación de Línea Germinal , Adulto , Puntos de Control del Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Femenino , Genes BRCA1 , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Proteínas Supresoras de Tumor/genética
3.
Int J Cancer ; 145(8): 2070-2081, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30809794

RESUMEN

Strong inherited predisposition to breast cancer is estimated to cause about 5-10% of all breast cancer cases. As the known susceptibility genes, such as BRCA1 and BRCA2, explain only a fraction of this, additional predisposing genes and related biological mechanisms are actively being searched for. We have recently identified a recurrent MCPH1 germline mutation, p.Arg304ValfsTer3, as a breast cancer susceptibility allele. MCPH1 encodes a multifunctional protein involved in maintenance of genomic integrity and it is also somatically altered in various cancer types, including breast cancer. Additionally, biallelic MCPH1 mutations are causative for microcephaly and at cellular level premature chromosome condensation. To study the molecular mechanisms leading to cancer predisposition and malignant conversion, here we have modeled the effect of MCPH1 p.Arg304ValfsTer3 mutation using gene-edited MCF10A breast epithelial cells. As a complementary approach, we also sought for additional potential cancer driver mutations in MCPH1 p.Arg304ValfsTer3 carrier breast tumors. We show that mutated MCPH1 de-regulates transcriptional programs related to invasion and metastasis and leads to downregulation of histone genes. These global transcriptional changes are mirrored by significantly increased migration and invasion potential of the cells as well as abnormal chromosomal condensation both before and after mitosis. These findings provide novel molecular insights to MCPH1 tumor suppressor functions and establish a role in regulation of transcriptional programs related to malignant conversion and chromosomal assembly. The MCPH1 p.Arg304ValfsTer3 carrier breast tumors showed recurrent tumor suppressor gene TP53 mutations, which were also significantly over-represented in breast tumors with somatically inactivated MCPH1.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Aberraciones Cromosómicas , Proteínas del Citoesqueleto/genética , Predisposición Genética a la Enfermedad/genética , Transcriptoma , Línea Celular , Fosfatidilinositol 3-Quinasa Clase I/genética , Genes Supresores de Tumor , Humanos , Mutación , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA