Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Annu Rev Genet ; 53: 93-116, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31505135

RESUMEN

Wolbachia is an endosymbiotic Alphaproteobacteria that can suppress insect-borne diseases through decreasing host virus transmission (population replacement) or through decreasing host population density (population suppression). We contrast natural Wolbachia infections in insect populations with Wolbachia transinfections in mosquitoes to gain insights into factors potentially affecting the long-term success of Wolbachia releases. Natural Wolbachia infections can spread rapidly, whereas the slow spread of transinfections is governed by deleterious effects on host fitness and demographic factors. Cytoplasmic incompatibility (CI) generated by Wolbachia is central to both population replacement and suppression programs, but CI in nature can be variable and evolve, as can Wolbachia fitness effects and virus blocking. Wolbachia spread is also influenced by environmental factors that decrease Wolbachia titer and reduce maternal Wolbachia transmission frequency. More information is needed on the interactions between Wolbachia and host nuclear/mitochondrial genomes, the interaction between invasion success and local ecological factors, and the long-term stability of Wolbachia-mediated virus blocking.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Interacciones Huésped-Patógeno/fisiología , Insectos Vectores/virología , Wolbachia/fisiología , Animales , Evolución Biológica , Citoplasma , Ambiente , Aptitud Genética , Insectos Vectores/microbiología , Insectos/microbiología , Insectos/virología , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología
2.
Proc Natl Acad Sci U S A ; 119(47): e2211637119, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36343219

RESUMEN

Cytoplasmic incompatibility (CI) is the most common reproductive manipulation produced by Wolbachia, obligately intracellular alphaproteobacteria that infect approximately half of all insect species. Once infection frequencies within host populations approach 10%, intense CI can drive Wolbachia to near fixation within 10 generations. However, natural selection among Wolbachia variants within individual host populations does not favor enhanced CI. Indeed, variants that do not cause CI but increase host fitness or are more reliably maternally transmitted are expected to spread if infected females remain protected from CI. Nevertheless, approximately half of analyzed Wolbachia infections cause detectable CI. Why? The frequency and persistence of CI are more plausibly explained by preferential spread to new host species (clade selection) rather than by natural selection among variants within host populations. CI-causing Wolbachia lineages preferentially spread into new host species because 1) CI increases equilibrium Wolbachia frequencies within host populations, and 2) CI-causing variants can remain at high frequencies within populations even when conditions change so that initially beneficial Wolbachia infections become harmful. An epidemiological model describing Wolbachia acquisition and loss by host species and the loss of CI-induction within Wolbachia lineages yields simple expressions for the incidence of Wolbachia infections and the fraction of those infections causing CI. Supporting a determinative role for differential interspecific spread in maintaining CI, many Wolbachia infections were recently acquired by their host species, many show evidence for contemporary spatial spread or retreat, and rapid evolution of CI-inducing loci, especially degradation, is common.


Asunto(s)
Wolbachia , Femenino , Humanos , Wolbachia/genética , Fertilidad , Citoplasma/metabolismo , Reproducción , Selección Genética , Simbiosis
3.
Mol Phylogenet Evol ; 158: 107061, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33387647

RESUMEN

The Drosophila montium species group is a clade of 94 named species, closely related to the model species D. melanogaster. The montium species group is distributed over a broad geographic range throughout Asia, Africa, and Australasia. Species of this group possess a wide range of morphologies, mating behaviors, and endosymbiont associations, making this clade useful for comparative analyses. We use genomic data from 42 available species to estimate the phylogeny and relative divergence times within the montium species group, and its relative divergence time from D. melanogaster. To assess the robustness of our phylogenetic inferences, we use 3 non-overlapping sets of 20 single-copy coding sequences and analyze all 60 genes with both Bayesian and maximum likelihood methods. Our analyses support monophyly of the group. Apart from the uncertain placement of a single species, D. baimaii, our analyses also support the monophyly of all seven subgroups proposed within the montium group. Our phylograms and relative chronograms provide a highly resolved species tree, with discordance restricted to estimates of relatively short branches deep in the tree. In contrast, age estimates for the montium crown group, relative to its divergence from D. melanogaster, depend critically on prior assumptions concerning variation in rates of molecular evolution across branches, and hence have not been reliably determined. We discuss methodological issues that limit phylogenetic resolution - even when complete genome sequences are available - as well as the utility of the current phylogeny for understanding the evolutionary and biogeographic history of this clade.


Asunto(s)
Drosophila/clasificación , Animales , Teorema de Bayes , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Drosophila/genética , Proteínas de Drosophila/clasificación , Proteínas de Drosophila/genética , Drosophila melanogaster/clasificación , Drosophila melanogaster/genética , Evolución Molecular , Filogenia , Análisis de Secuencia de ADN
4.
PLoS Biol ; 15(5): e2001894, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28557993

RESUMEN

Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100-200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation.


Asunto(s)
Aedes/microbiología , Agentes de Control Biológico , Virus del Dengue/fisiología , Dengue/prevención & control , Modelos Biológicos , Urbanización , Wolbachia/fisiología , Aedes/crecimiento & desarrollo , Aedes/fisiología , Aedes/virología , Animales , Agentes de Control Biológico/aislamiento & purificación , Colapso de Colonias/microbiología , Colapso de Colonias/virología , Heurística Computacional , Dengue/transmisión , Dengue/virología , Virus del Dengue/crecimiento & desarrollo , Virus del Dengue/aislamiento & purificación , Vectores de Enfermedades , Femenino , Salud Global , Transición de la Salud , Humanos , Control de Infecciones , Masculino , Parques Recreativos , Queensland , Análisis Espacio-Temporal , Wolbachia/crecimiento & desarrollo , Wolbachia/aislamiento & purificación
5.
Am Nat ; 193(6): 755-772, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31094602

RESUMEN

The comparative method has long been a fundamental exploratory tool in evolutionary biology, but this venerable approach was revolutionized in 1985, when Felsenstein published "Phylogenies and the Comparative Method" in The American Naturalist. This article forced comparative biologists to start thinking phylogenetically when conducting statistical analyses of correlated trait evolution rather than simply applying conventional statistical methods that ignore evolutionary relationships. It did so by introducing a novel analytical method (phylogenetically "independent contrasts") that required a phylogenetic topology with branch lengths and that assumed a Brownian motion model of trait evolution. Independent contrasts enabled comparative biologists to avoid the statistical dilemma of nonindependence of species values, arising from shared ancestry, but came at the cost of needing a detailed phylogeny and of accepting a specific model of character change. Nevertheless, this article not only revitalized comparative biology but even encouraged studies aimed at estimating phylogenies. Felsenstein's characteristically lucid and concise statement of the problem (illustrated with powerful graphics), coupled with an oncoming flood of new molecular data and techniques for estimating phylogenies, led Felsenstein's 1985 article to become the second most cited article in the history of this journal. Here we present a personal review of comparative biology before, during, and after Joe's article. For historical context, we append a perspective written by Joe himself that describes how his article evolved, unedited transcripts of reviews of his submitted manuscript, and a guide to some nontrivial calculations. These additional materials help emphasize that the process of science does not always occur gradually or predictably.


Asunto(s)
Biología/historia , Filogenia , Adaptación Biológica , Animales , Biología/métodos , Personajes , Historia del Siglo XIX , Historia del Siglo XX
6.
BMC Microbiol ; 19(1): 206, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481018

RESUMEN

BACKGROUND: Little is known about how bacterial endosymbionts colonize host tissues. Because many insect endosymbionts are maternally transmitted, egg colonization is critical for endosymbiont success. Wolbachia bacteria, carried by approximately half of all insect species, provide an excellent model for characterizing endosymbiont infection dynamics. To date, technical limitations have precluded stepwise analysis of germline colonization by Wolbachia. It is not clear to what extent titer-altering effects are primarily mediated by growth rates of Wolbachia within cell lineages or migration of Wolbachia between cells. RESULTS: The objective of this work is to inform mechanisms of germline colonization through use of optimized methodology. The approaches are framed in terms of nutritional impacts on Wolbachia. Yeast-rich diets in particular have been shown to suppress Wolbachia titer in the Drosophila melanogaster germline. To determine the extent of Wolbachia sensitivity to diet, we optimized 3-dimensional, multi-stage quantification of Wolbachia titer in maternal germline cells. Technical and statistical validation confirmed the identity of Wolbachia in vivo, the reproducibility of Wolbachia quantification and the statistical power to detect these effects. The data from adult feeding experiments demonstrated that germline Wolbachia titer is distinctly sensitive to yeast-rich host diets in late oogenesis. To investigate the physiological basis for these nutritional impacts, we optimized methodology for absolute Wolbachia quantification by real-time qPCR. We found that yeast-rich diets exerted no significant effect on bodywide Wolbachia titer, although ovarian titers were significantly reduced. This suggests that host diets affects Wolbachia distribution between the soma and late stage germline cells. Notably, relative qPCR methods distorted apparent wsp abundance, due to altered host DNA copy number in yeast-rich conditions. This highlights the importance of absolute quantification data for testing mechanistic hypotheses. CONCLUSIONS: We demonstrate that absolute quantification of Wolbachia, using well-controlled cytological and qPCR-based methods, creates new opportunities to determine how bacterial abundance within the germline relates to bacterial distribution within the body. This methodology can be applied to further test germline infection dynamics in response to chemical treatments, genetic conditions, new host/endosymbiont combinations, or potentially adapted to analyze other cell and tissue types.


Asunto(s)
Técnicas Citológicas/métodos , Drosophila melanogaster/microbiología , Óvulo/microbiología , Reacción en Cadena de la Polimerasa/métodos , Wolbachia/crecimiento & desarrollo , Alimentación Animal/análisis , Animales , Drosophila melanogaster/metabolismo , Femenino , Ovario/crecimiento & desarrollo , Ovario/microbiología , Óvulo/crecimiento & desarrollo , Wolbachia/genética , Wolbachia/aislamiento & purificación
7.
Theor Popul Biol ; 118: 46-49, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28987627

RESUMEN

Mendel (1866) suggested that if many heritable "factors" contribute to a trait, near-continuous variation could result. Fisher (1918) clarified the connection between Mendelian inheritance and continuous trait variation by assuming many loci, each with small effect, and by informally invoking the central limit theorem. Barton et al. (2017) rigorously analyze the approach to a multivariate Gaussian distribution of the genetic effects for descendants of parents who may be related. This commentary distinguishes three nested approximations, referred to as "infinitesimal genetics," "Gaussian descendants" and "Gaussian population," each plausibly called "the infinitesimal model." The first and most basic is Fisher's "infinitesimal" approximation of the underlying genetics - namely, many loci, each making a small contribution to the total variance. As Barton et al. (2017) show, in the limit as the number of loci increases (with enough additivity), the distribution of genotypic values for descendants approaches a multivariate Gaussian, whose variance-covariance structure depends only on the relatedness, not the phenotypes, of the parents (or whether their population experiences selection or other processes such as mutation and migration). Barton et al. (2017) call this rigorously defensible "Gaussian descendants" approximation "the infinitesimal model." However, it is widely assumed that Fisher's genetic assumptions yield another Gaussian approximation, in which the distribution of breeding values in a population follows a Gaussian - even if the population is subject to non-Gaussian selection. This third "Gaussian population" approximation, is also described as the "infinitesimal model." Unlike the "Gaussian descendants" approximation, this third approximation cannot be rigorously justified, except in a weak-selection limit, even for a purely additive model. Nevertheless, it underlies the two most widely used descriptions of selection-induced changes in trait means and genetic variances, the "breeder's equation" and the "Bulmer effect." Future generations may understand why the "infinitesimal model" provides such useful approximations in the face of epistasis, linkage, linkage disequilibrium and strong selection.


Asunto(s)
Variación Genética , Modelos Genéticos , Selección Genética , Humanos , Desequilibrio de Ligamiento , Distribución Normal
8.
Theor Popul Biol ; 115: 45-60, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28411063

RESUMEN

A novel strategy for controlling the spread of arboviral diseases such as dengue, Zika and chikungunya is to transform mosquito populations with virus-suppressing Wolbachia. In general, Wolbachia transinfected into mosquitoes induce fitness costs through lower viability or fecundity. These maternally inherited bacteria also produce a frequency-dependent advantage for infected females by inducing cytoplasmic incompatibility (CI), which kills the embryos produced by uninfected females mated to infected males. These competing effects, a frequency-dependent advantage and frequency-independent costs, produce bistable Wolbachia frequency dynamics. Above a threshold frequency, denoted pˆ, CI drives fitness-decreasing Wolbachia transinfections through local populations; but below pˆ, infection frequencies tend to decline to zero. If pˆ is not too high, CI also drives spatial spread once infections become established over sufficiently large areas. We illustrate how simple models provide testable predictions concerning the spatial and temporal dynamics of Wolbachia introductions, focusing on rate of spatial spread, the shape of spreading waves, and the conditions for initiating spread from local introductions. First, we consider the robustness of diffusion-based predictions to incorporating two important features of wMel-Aedes aegypti biology that may be inconsistent with the diffusion approximations, namely fast local dynamics induced by complete CI (i.e., all embryos produced from incompatible crosses die) and long-tailed, non-Gaussian dispersal. With complete CI, our numerical analyses show that long-tailed dispersal changes wave-width predictions only slightly; but it can significantly reduce wave speed relative to the diffusion prediction; it also allows smaller local introductions to initiate spatial spread. Second, we use approximations for pˆ and dispersal distances to predict the outcome of 2013 releases of wMel-infected Aedes aegypti in Cairns, Australia, Third, we describe new data from Ae. aegypti populations near Cairns, Australia that demonstrate long-distance dispersal and provide an approximate lower bound on pˆ for wMel in northeastern Australia. Finally, we apply our analyses to produce operational guidelines for efficient transformation of vector populations over large areas. We demonstrate that even very slow spatial spread, on the order of 10-20 m/month (as predicted), can produce area-wide population transformation within a few years following initial releases covering about 20-30% of the target area.


Asunto(s)
Aedes/microbiología , Agentes de Control Biológico , Virus del Dengue/fisiología , Dengue/prevención & control , Modelos Biológicos , Wolbachia/fisiología , Aedes/crecimiento & desarrollo , Aedes/fisiología , Aedes/virología , Animales , Dengue/transmisión , Dengue/virología , Virus del Dengue/crecimiento & desarrollo , Virus del Dengue/aislamiento & purificación , Vectores de Enfermedades , Femenino , Humanos , Control de Infecciones , Masculino , Análisis Espacio-Temporal , Wolbachia/crecimiento & desarrollo , Wolbachia/aislamiento & purificación
9.
PLoS Pathog ; 9(9): e1003607, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24068927

RESUMEN

The maternally inherited intracellular bacteria Wolbachia can manipulate host reproduction in various ways that foster frequency increases within and among host populations. Manipulations involving cytoplasmic incompatibility (CI), where matings between infected males and uninfected females produce non-viable embryos, are common in arthropods and produce a reproductive advantage for infected females. CI was associated with the spread of Wolbachia variant wRi in Californian populations of Drosophila simulans, which was interpreted as a bistable wave, in which local infection frequencies tend to increase only once the infection becomes sufficiently common to offset imperfect maternal transmission and infection costs. However, maternally inherited Wolbachia are expected to evolve towards mutualism, and they are known to increase host fitness by protecting against infectious microbes or increasing fecundity. We describe the sequential spread over approximately 20 years in natural populations of D. simulans on the east coast of Australia of two Wolbachia variants (wAu and wRi), only one of which causes significant CI, with wRi displacing wAu since 2004. Wolbachia and mtDNA frequency data and analyses suggest that these dynamics, as well as the earlier spread in California, are best understood as Fisherian waves of favourable variants, in which local spread tends to occur from arbitrarily low frequencies. We discuss implications for Wolbachia-host dynamics and coevolution and for applications of Wolbachia to disease control.


Asunto(s)
Drosophila/microbiología , Embrión no Mamífero/microbiología , Modelos Biológicos , Simbiosis , Wolbachia/fisiología , Animales , Australia , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/metabolismo , ADN Mitocondrial/química , ADN Mitocondrial/metabolismo , Drosophila/crecimiento & desarrollo , Drosophila/fisiología , Femenino , Fertilidad , Masculino , Datos de Secuencia Molecular , Tipificación Molecular , Mutación , Control Biológico de Vectores , Análisis Espacio-Temporal , Especificidad de la Especie , Wolbachia/clasificación , Wolbachia/aislamiento & purificación
10.
Mol Ecol ; 23(19): 4871-85, 2014 10.
Artículo en Inglés | MEDLINE | ID: mdl-25156506

RESUMEN

Drosophila suzukii recently invaded North America and Europe. Populations in Hawaii, California, New York and Nova Scotia are polymorphic for Wolbachia, typically with <20% infection frequency. The Wolbachia in D. suzukii, denoted wSuz, is closely related to wRi, the variant prevalent in continental populations of D. simulans. wSuz is also nearly identical to Wolbachia found in D. subpulchrella, plausibly D. suzukii's sister species. This suggests vertical Wolbachia transmission through cladogenesis ('cladogenic transmission'). The widespread occurrence of 7-20% infection frequencies indicates a stable polymorphism. wSuz is imperfectly maternally transmitted, with wild infected females producing on average 5-10% uninfected progeny. As expected from its low frequency, wSuz produces no cytoplasmic incompatibility (CI), that is, no increased embryo mortality when infected males mate with uninfected females, and no appreciable sex-ratio distortion. The persistence of wSuz despite imperfect maternal transmission suggests positive fitness effects. Assuming a balance between selection and imperfect transmission, we expect a fitness advantage on the order of 20%. Unexpectedly, Wolbachia-infected females produce fewer progeny than do uninfected females. We do not yet understand the maintenance of wSuz in D. suzukii. The absence of detectable CI in D. suzukii and D. subpulchrella makes it unlikely that CI-based mechanisms could be used to control this species without transinfection using novel Wolbachia. Contrary to their reputation as horizontally transmitted reproductive parasites, many Wolbachia infections are acquired through introgression or cladogenesis and many cause no appreciable reproductive manipulation. Such infections, likely to be mutualistic, may be central to understanding the pervasiveness of Wolbachia among arthropods.


Asunto(s)
Drosophila/microbiología , Wolbachia/fisiología , Animales , Técnicas de Tipificación Bacteriana , ADN Mitocondrial/genética , Drosophila/clasificación , Drosophila/fisiología , Femenino , Fertilidad , Masculino , Tipificación de Secuencias Multilocus , Filogenia , Reproducción , Wolbachia/clasificación
11.
bioRxiv ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38105949

RESUMEN

About half of all insect species carry maternally inherited Wolbachia alphaproteobacteria, making Wolbachia the most common endosymbionts known in nature. Often Wolbachia spread to high frequencies within populations due to cytoplasmic incompatibility (CI), a Wolbachia-induced sperm modification caused by prophage-associated genes (cifs) that kill embryos without Wolbachia. Several Wolbachia variants also block viruses, including wMel from Drosophila melanogaster when transinfected into the mosquito Aedes aegypti. CI enables the establishment and stable maintenance of pathogen-blocking wMel in natural Ae. aegypti populations. These transinfections are reducing dengue disease incidence on multiple continents. While it has long been known that closely related Wolbachia occupy distantly related hosts, the timing of Wolbachia host switching and molecular evolution has not been widely quantified. We provide a new, conservative calibration for Wolbachia chronograms based on examples of co-divergence of Wolbachia and their insect hosts. Synthesizing publicly available and new genomic data, we use our calibration to demonstrate that wMel-like variants separated by only about 370,000 years have naturally colonized holometabolous dipteran and hymenopteran insects that diverged approximately 350 million years ago. Data from Wolbachia variants closely related to those currently dominant in D. melanogaster and D. simulans illustrate that cifs are rapidly acquired and lost among Wolbachia genomes, on a time scale of 104-105 years. This turnover occurs with and without the Wovirus prophages that contain them, with closely related cifs found in distantly related phages and distantly related cifs found in closely related phages. We present evidence for purifying selection on CI rescue function and on particular Cif protein domains. Our results quantify the tempo and mode of rapid host switching and horizontal gene transfer that underlie the spread and diversity of Wolbachia sampled from diverse host species. The wMel variants we highlight from hosts in different climates may offer new options for broadening Wolbachia-based biocontrol of diseases and pests.

12.
Proc Biol Sci ; 280(1760): 20130371, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23576788

RESUMEN

Wolbachia infections are being introduced into mosquito vectors of human diseases following the discovery that they can block transmission of disease agents. This requires mosquitoes infected with the disease-blocking Wolbachia to successfully invade populations lacking the infection. While this process is facilitated by features of Wolbachia, particularly their ability to cause cytoplasmic incompatibility, blocking Wolbachia may produce deleterious effects, such as reduced host viability or fecundity, that inhibit successful local introductions and subsequent spatial spread. Here, we outline an approach to facilitate the introduction and spread of Wolbachia infections by coupling Wolbachia introduction to resistance to specific classes of insecticides. The approach takes advantage of very high maternal transmission fidelity of Wolbachia infections in mosquitoes, complete incompatibility between infected males and uninfected females, the widespread occurrence of insecticide resistance, and the widespread use of chemical control in disease-endemic countries. This approach is easily integrated into many existing control strategies, provides population suppression during release and might be used to introduce Wolbachia infections even with high and seasonally dependent deleterious effects, such as the wMelPop infection introduced into Aedes aegypti for dengue control. However, possible benefits will need to be weighed against concerns associated with the introduction of resistance alleles.


Asunto(s)
Aedes/genética , Aedes/microbiología , Agentes de Control Biológico , Dengue/prevención & control , Insectos Vectores/microbiología , Control de Mosquitos/métodos , Wolbachia/fisiología , Aedes/virología , Animales , Australia , Resistencia a la Enfermedad/genética , Femenino , Genotipo , Humanos , Masculino , Modelos Biológicos , Reproducción/fisiología
13.
Evol Lett ; 6(1): 92-105, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35127140

RESUMEN

Maternally inherited Wolbachia transinfections are being introduced into natural mosquito populations to reduce the transmission of dengue, Zika, and other arboviruses. Wolbachia-induced cytoplasmic incompatibility provides a frequency-dependent reproductive advantage to infected females that can spread transinfections within and among populations. However, because transinfections generally reduce host fitness, they tend to spread within populations only after their frequency exceeds a critical threshold. This produces bistability with stable equilibrium frequencies at both 0 and 1, analogous to the bistability produced by underdominance between alleles or karyotypes and by population dynamics under Allee effects. Here, we analyze how stochastic frequency variation produced by finite population size can facilitate the local spread of variants with bistable dynamics into areas where invasion is unexpected from deterministic models. Our exemplar is the establishment of wMel Wolbachia in the Aedes aegypti population of Pyramid Estates (PE), a small community in far north Queensland, Australia. In 2011, wMel was stably introduced into Gordonvale, separated from PE by barriers to A. aegypti dispersal. After nearly 6 years during which wMel was observed only at low frequencies in PE, corresponding to an apparent equilibrium between immigration and selection, wMel rose to fixation by 2018. Using analytic approximations and statistical analyses, we demonstrate that the observed fixation of wMel at PE is consistent with both stochastic transition past an unstable threshold frequency and deterministic transformation produced by steady immigration at a rate just above the threshold required for deterministic invasion. The indeterminacy results from a delicate balance of parameters needed to produce the delayed transition observed. Our analyses suggest that once Wolbachia transinfections are established locally through systematic introductions, stochastic "threshold crossing" is likely to only minimally enhance spatial spread, providing a local ratchet that slightly-but systematically-aids area-wide transformation of disease-vector populations in heterogeneous landscapes.

14.
Am Nat ; 178(3): E48-75, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21828986

RESUMEN

Unlike unconditionally advantageous "Fisherian" variants that tend to spread throughout a species range once introduced anywhere, "bistable" variants, such as chromosome translocations, have two alternative stable frequencies, absence and (near) fixation. Analogous to populations with Allee effects, bistable variants tend to increase locally only once they become sufficiently common, and their spread depends on their rate of increase averaged over all frequencies. Several proposed manipulations of insect populations, such as using Wolbachia or "engineered underdominance" to suppress vector-borne diseases, produce bistable rather than Fisherian dynamics. We synthesize and extend theoretical analyses concerning three features of their spatial behavior: rate of spread, conditions to initiate spread from a localized introduction, and wave stopping caused by variation in population densities or dispersal rates. Unlike Fisherian variants, bistable variants tend to spread spatially only for particular parameter combinations and initial conditions. Wave initiation requires introduction over an extended region, while subsequent spatial spread is slower than for Fisherian waves and can easily be halted by local spatial inhomogeneities. We present several new results, including robust sufficient conditions to initiate (and stop) spread, using a one-parameter cubic approximation applicable to several models. The results have both basic and applied implications.


Asunto(s)
Insectos/genética , Modelos Genéticos , Animales , Evolución Biológica , Flujo Génico , Insectos/microbiología , Dinámica Poblacional , Wolbachia
15.
PLoS Biol ; 5(5): e114, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17439303

RESUMEN

Wolbachia are maternally inherited bacteria that commonly spread through host populations by causing cytoplasmic incompatibility, often expressed as reduced egg hatch when uninfected females mate with infected males. Infected females are frequently less fecund as a consequence of Wolbachia infection. However, theory predicts that because of maternal transmission, these "parasites" will tend to evolve towards a more mutualistic association with their hosts. Drosophila simulans in California provided the classic case of a Wolbachia infection spreading in nature. Cytoplasmic incompatibility allowed the infection to spread through individual populations within a few years and from southern to northern California (more than 700 km) within a decade, despite reducing the fecundity of infected females by 15%-20% under laboratory conditions. Here we show that the Wolbachia in California D. simulans have changed over the last 20 y so that infected females now exhibit an average 10% fecundity advantage over uninfected females in the laboratory. Our data suggest smaller but qualitatively similar changes in relative fecundity in nature and demonstrate that fecundity-increasing Wolbachia variants are currently polymorphic in natural populations.


Asunto(s)
Drosophila/microbiología , Wolbachia/genética , Animales , Secuencia de Bases , Evolución Biológica , California , Citoplasma , Femenino , Fertilidad/fisiología , Infertilidad/microbiología , Masculino , Datos de Secuencia Molecular , Tetraciclina/farmacología , Wolbachia/efectos de los fármacos
16.
Genetics ; 178(2): 1037-48, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18245356

RESUMEN

Reciprocal crosses between species can yield hybrids with different viabilities. The high frequency of this asymmetric hybrid viability ("Darwin's corollary") places it alongside Haldane's rule and the "large-X effect" as a general feature of postmating reproductive isolation. Recent theory suggests that reciprocal cross asymmetries can arise from stochastic substitutions in uniparentally inherited loci such as mitochondrial genomes, although large systematic differences in mitochondrial substitution rates can also contribute to asymmetries. Although the magnitude of asymmetry will be relatively insensitive to unequal rates of mitochondrial evolution in diverging species, we show here that rate asymmetries can have a large effect on the direction of viability asymmetries. In reciprocal crosses between species, the maternal parent with faster mitochondrial evolution will tend to produce less viable F(1) hybrids owing to an increased probability of mito-nuclear incompatibilities. We test this prediction using data on reciprocal hybrid viability and molecular evolution rates from a clade of freshwater fishes, Centrarchidae. As predicted, species with accelerated mitochondrial evolution tend to be the worse maternal parent for F(1) hybrids, providing the first comparative evidence for a systematic basis to Darwin's corollary. This result is consistent with the hypothesis that mito-nuclear incompatibilities can play an important role in reproductive isolation. Such asymmetrical reproductive isolation may help explain the asymmetrical mitochondrial introgression observed between many hybridizing species. However, as with any comparative study, we cannot rule out the possibility that our results arise from a mutual correlation with a third variable such as body size.


Asunto(s)
Evolución Molecular , Mitocondrias/genética , Modelos Genéticos , Perciformes/genética , Animales , Cruzamientos Genéticos , Femenino , Masculino , Perciformes/clasificación , Filogenia , Sobrevida
17.
Genetics ; 212(4): 1399-1419, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31227544

RESUMEN

Maternally transmitted Wolbachia infect about half of insect species, yet the predominant mode(s) of Wolbachia acquisition remains uncertain. Species-specific associations could be old, with Wolbachia and hosts codiversifying (i.e., cladogenic acquisition), or relatively young and acquired by horizontal transfer or introgression. The three Drosophila yakuba-clade hosts [(D. santomea, D. yakuba) D. teissieri] diverged ∼3 MYA and currently hybridize on the West African islands Bioko and São Tomé. Each species is polymorphic for nearly identical Wolbachia that cause weak cytoplasmic incompatibility (CI)-reduced egg hatch when uninfected females mate with infected males. D. yakuba-clade Wolbachia are closely related to wMel, globally polymorphic in D. melanogaster We use draft Wolbachia and mitochondrial genomes to demonstrate that D. yakuba-clade phylogenies for Wolbachia and mitochondria tend to follow host nuclear phylogenies. However, roughly half of D. santomea individuals, sampled both inside and outside of the São Tomé hybrid zone, have introgressed D. yakuba mitochondria. Both mitochondria and Wolbachia possess far more recent common ancestors than the bulk of the host nuclear genomes, precluding cladogenic Wolbachia acquisition. General concordance of Wolbachia and mitochondrial phylogenies suggests that horizontal transmission is rare, but varying relative rates of molecular divergence complicate chronogram-based statistical tests. Loci that cause CI in wMel are disrupted in D. yakuba-clade Wolbachia; but a second set of loci predicted to cause CI are located in the same WO prophage region. These alternative CI loci seem to have been acquired horizontally from distantly related Wolbachia, with transfer mediated by flanking Wolbachia-specific ISWpi1 transposons.


Asunto(s)
Drosophila/genética , Transferencia de Gen Horizontal , Infertilidad/genética , Wolbachia/genética , Animales , Drosophila/microbiología , Drosophila/fisiología , Femenino , Genoma Bacteriano , Genoma de los Insectos , Genoma Mitocondrial , Interacciones Huésped-Patógeno , Masculino , Filogenia , Wolbachia/patogenicidad
18.
Evolution ; 73(6): 1278-1295, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31001816

RESUMEN

Maternally transmitted Wolbachia bacteria infect about half of all insect species. Many Wolbachia cause cytoplasmic incompatibility (CI) and reduced egg hatch when uninfected females mate with infected males. Although CI produces a frequency-dependent fitness advantage that leads to high equilibrium Wolbachia frequencies, it does not aid Wolbachia spread from low frequencies. Indeed, the fitness advantages that produce initial Wolbachia spread and maintain non-CI Wolbachia remain elusive. wMau Wolbachia infecting Drosophila mauritiana do not cause CI, despite being very similar to CI-causing wNo from Drosophila simulans (0.068% sequence divergence over 682,494 bp), suggesting recent CI loss. Using draft wMau genomes, we identify a deletion in a CI-associated gene, consistent with theory predicting that selection within host lineages does not act to increase or maintain CI. In the laboratory, wMau shows near-perfect maternal transmission; but we find no significant effect on host fecundity, in contrast to published data. Intermediate wMau frequencies on the island of Mauritius are consistent with a balance between unidentified small, positive fitness effects and imperfect maternal transmission. Our phylogenomic analyses suggest that group-B Wolbachia, including wMau and wPip, diverged from group-A Wolbachia, such as wMel and wRi, 6-46 million years ago, more recently than previously estimated.


Asunto(s)
Drosophila/microbiología , Drosophila/fisiología , Wolbachia/fisiología , Animales , Evolución Biológica , Citoplasma/microbiología , Femenino , Fertilidad , Islas , Mauricio , Filogenia , Wolbachia/genética
19.
Evolution ; 62(11): 2868-83, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18752605

RESUMEN

Environmental niche models, which are generated by combining species occurrence data with environmental GIS data layers, are increasingly used to answer fundamental questions about niche evolution, speciation, and the accumulation of ecological diversity within clades. The question of whether environmental niches are conserved over evolutionary time scales has attracted considerable attention, but often produced conflicting conclusions. This conflict, however, may result from differences in how niche similarity is measured and the specific null hypothesis being tested. We develop new methods for quantifying niche overlap that rely on a traditional ecological measure and a metric from mathematical statistics. We reexamine a classic study of niche conservatism between sister species in several groups of Mexican animals, and, for the first time, address alternative definitions of "niche conservatism" within a single framework using consistent methods. As expected, we find that environmental niches of sister species are more similar than expected under three distinct null hypotheses, but that they are rarely identical. We demonstrate how our measures can be used in phylogenetic comparative analyses by reexamining niche divergence in an adaptive radiation of Cuban anoles. Our results show that environmental niche overlap is closely tied to geographic overlap, but not to phylogenetic distances, suggesting that niche conservatism has not constrained local communities in this group to consist of closely related species. We suggest various randomization tests that may prove useful in other areas of ecology and evolutionary biology.


Asunto(s)
Ecosistema , Ambiente , Evolución Molecular , Gnathostoma/clasificación , Animales , Aves/clasificación , Aves/genética , Mariposas Diurnas/clasificación , Mariposas Diurnas/genética , Distribución de Chi-Cuadrado , Clima , Cuba , Falconiformes/clasificación , Falconiformes/genética , Variación Genética , Geografía , Gnathostoma/genética , Mamíferos/clasificación , Mamíferos/genética , Filogenia , Densidad de Población
20.
Proc Biol Sci ; 275(1652): 2769-76, 2008 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-18755670

RESUMEN

Wolbachia are very common, maternally transmitted endosymbionts of insects. They often spread by a mechanism termed cytoplasmic incompatibility (CI) that involves reduced egg hatch when Wolbachia-free ova are fertilized by sperm from Wolbachia-infected males. Because the progeny of Wolbachia-infected females generally do not suffer CI-induced mortality, infected females are often at a reproductive advantage in polymorphic populations. Deterministic models show that Wolbachia that impose no costs on their hosts and have perfect maternal transmission will spread from arbitrarily low frequencies (though initially very slowly); otherwise, there will be a threshold frequency below which Wolbachia frequencies decline to extinction and above which they increase to fixation or a high stable equilibrium. Stochastic theory was used to calculate the probability of fixation in populations of different size for arbitrary current frequencies of Wolbachia, with special attention paid to the case of spread after the arrival of a single infected female. Exact results are given based on a Moran process that assumes a specific demographic model, and approximate results are obtained using the more general Wright-Fisher theory. A new analytical approximation for the probability of fixation is derived, which performs well for small population sizes. The significance of stochastic effects in the natural spread of Wolbachia and their relevance to the use of Wolbachia as a drive mechanism in vector and pest management are discussed.


Asunto(s)
Genética de Población , Insectos/microbiología , Modelos Biológicos , Procesos Estocásticos , Wolbachia/crecimiento & desarrollo , Animales , Femenino , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA