Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Comput Biol ; 18(6): e1010226, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666719

RESUMEN

GABA is generally known as the principal inhibitory neurotransmitter in the nervous system, usually acting by hyperpolarizing membrane potential. However, GABAergic currents sometimes exhibit non-inhibitory effects, depending on the brain region, developmental stage or pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of several single neuron models, using both analytical calculations and numerical simulations. We find that GABAergic synaptic conductance and output firing rate exhibit three qualitatively different regimes as a function of GABA reversal potential, EGABA: monotonically decreasing for sufficiently low EGABA (inhibitory), monotonically increasing for EGABA above firing threshold (excitatory); and a non-monotonic region for intermediate values of EGABA. In the non-monotonic regime, small GABA conductances have an excitatory effect while large GABA conductances show an inhibitory effect. We provide a phase diagram of different GABAergic effects as a function of GABA reversal potential and glutamate conductance. We find that noisy inputs increase the range of EGABA for which the non-monotonic effect can be observed. We also construct a micro-circuit model of striatum to explain observed effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic explanation of paradoxical effects of GABAergic synaptic inputs, with implications for understanding the effects of GABA in neural computation and development.


Asunto(s)
Interneuronas , Neuronas , Cuerpo Estriado , Interneuronas/fisiología , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/fisiología
2.
Psychopharmacology (Berl) ; 238(4): 1121-1131, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33454843

RESUMEN

RATIONALE: Cannabinoid type 1 receptors (CB1Rs) are widely expressed within the brain's reward circuits and are implicated in regulating drug induced behavioral adaptations. Understanding how CB1R signaling in discrete circuits and cell types contributes to drug-related behavior provides further insight into the pathology of substance use disorders. OBJECTIVE AND METHODS: We sought to determine how cell type-specific expression of CB1Rs within striatal circuits contributes to cocaine-induced behavioral plasticity, hypothesizing that CB1R function in distinct striatal neuron populations would differentially impact behavioral outcomes. We crossed conditional Cnr1fl/fl mice and striatal output pathway cre lines (Drd1a -cre; D1, Adora2a -cre; A2a) to generate cell type-specific CB1R knockout mice and assessed their performance in cocaine locomotor and associative behavioral assays. RESULTS: Both knockout lines retained typical locomotor activity at baseline. D1-Cre x Cnr1fl/fl mice did not display hyperlocomotion in response to acute cocaine dosing, and both knockout lines exhibited blunted locomotor activity across repeated cocaine doses. A2a-cre Cnr1fl/fl, mice did not express a preference for cocaine paired environments in a two-choice place preference task. CONCLUSIONS: This study aids in mapping CB1R-dependent cocaine-induced behavioral adaptations onto distinct striatal neuron subtypes. A reduction of cocaine-induced locomotor activation in the D1- and A2a-Cnr1 knockout mice supports a role for CB1R function in the motor circuit. Furthermore, a lack of preference for cocaine-associated context in A2a-Cnr1 mice suggests that CB1Rs on A2a-neuron inhibitory terminals are necessary for either reward perception, memory consolidation, or recall. These results direct future investigations into CB1R-dependent adaptations underlying the development and persistence of substance use disorders.


Asunto(s)
Trastornos Relacionados con Cocaína/psicología , Ambiente , Neuronas/efectos de los fármacos , Receptor de Adenosina A2A/efectos de los fármacos , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Animales , Condicionamiento Operante/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Receptor de Adenosina A2A/genética , Receptor Cannabinoide CB1/genética , Recompensa
3.
Science ; 372(6540)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33888613

RESUMEN

The integrated stress response (ISR) maintains proteostasis by modulating protein synthesis and is important in synaptic plasticity, learning, and memory. We developed a reporter, SPOTlight, for brainwide imaging of ISR state with cellular resolution. Unexpectedly, we found a class of neurons in mouse brain, striatal cholinergic interneurons (CINs), in which the ISR was activated at steady state. Genetic and pharmacological manipulations revealed that ISR signaling was necessary in CINs for normal type 2 dopamine receptor (D2R) modulation. Inhibiting the ISR inverted the sign of D2R modulation of CIN firing and evoked dopamine release and altered skill learning. Thus, a noncanonical, steady-state mode of ISR activation is found in CINs, revealing a neuromodulatory role for the ISR in learning.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Dopamina/metabolismo , Interneuronas/fisiología , Aprendizaje/fisiología , Estrés Fisiológico , Potenciales de Acción , Animales , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Destreza Motora , Plasticidad Neuronal , Técnicas de Placa-Clamp , Biosíntesis de Proteínas , Receptores de Dopamina D2/metabolismo
4.
Cell Rep ; 32(4): 107971, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726634

RESUMEN

Synaptic plasticity is a key mechanism of learning and memory. Synaptic plasticity mechanisms within the nucleus accumbens (NAc) mediate differential behavioral adaptations. Feedforward inhibition in the NAc occurs when glutamatergic afferents onto medium spiny neurons (MSNs) collateralize onto fast-spiking parvalbumin (PV)-expressing interneurons (PV-INs), which exert GABAergic control over MSN action potential generation. Here, we find that feedforward glutamatergic synapses onto PV-INs in the NAc core selectively express Ca2+-permeable AMPA receptors (CP-AMPARs). Ca2+ influx by CP-AMPARs on PV-INs triggers long-term depression (LTD) mediated by endocannabinoid (eCB) signaling at presynaptic cannabinoid type-1 (CB1) receptors (CB1Rs). Moreover, CP-AMPARs authorize tonic eCB signaling to negatively regulate glutamate release probability. Blockade of CP-AMPARs in the NAc core in vivo is sufficient to disinhibit locomotor output. These findings elucidate mechanisms by which PV-IN-embedded microcircuits in the NAc undergo activity-dependent shifts in synaptic strength.


Asunto(s)
Endocannabinoides/metabolismo , Núcleo Accumbens/metabolismo , Receptores AMPA/metabolismo , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Endocannabinoides/fisiología , Ácido Glutámico/metabolismo , Interneuronas/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Parvalbúminas , Receptores Sensibles al Calcio/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
5.
J Clin Invest ; 130(4): 1728-1742, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31874107

RESUMEN

Deficits in social interaction (SI) are a core symptom of autism spectrum disorders (ASDs); however, treatments for social deficits are notably lacking. Elucidating brain circuits and neuromodulatory signaling systems that regulate sociability could facilitate a deeper understanding of ASD pathophysiology and reveal novel treatments for ASDs. Here we found that in vivo optogenetic activation of the basolateral amygdala-nucleus accumbens (BLA-NAc) glutamatergic circuit reduced SI and increased social avoidance in mice. Furthermore, we found that 2-arachidonoylglycerol (2-AG) endocannabinoid signaling reduced BLA-NAc glutamatergic activity and that pharmacological 2-AG augmentation via administration of JZL184, a monoacylglycerol lipase inhibitor, blocked SI deficits associated with in vivo BLA-NAc stimulation. Additionally, optogenetic inhibition of the BLA-NAc circuit markedly increased SI in the Shank3B-/- mouse, an ASD model with substantial SI impairment, without affecting SI in WT mice. Finally, we demonstrated that JZL184 delivered systemically or directly to the NAc also normalized SI deficits in Shank3B-/- mice, while ex vivo JZL184 application corrected aberrant NAc excitatory and inhibitory neurotransmission and reduced BLA-NAc-elicited feed-forward inhibition of NAc neurons in Shank3B-/- mice. These data reveal circuit-level and neuromodulatory mechanisms regulating social function relevant to ASDs and suggest 2-AG augmentation could reduce social deficits via modulation of excitatory and inhibitory neurotransmission in the NAc.


Asunto(s)
Trastorno del Espectro Autista , Complejo Nuclear Basolateral , Conducta Animal , Endocannabinoides/metabolismo , Núcleo Accumbens , Conducta Social , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/fisiopatología , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/patología , Complejo Nuclear Basolateral/fisiopatología , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/deficiencia , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Núcleo Accumbens/fisiopatología
6.
Neuropsychopharmacology ; 43(12): 2383-2389, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29982266

RESUMEN

Transient upregulation of GluN2B-containing NMDA receptors (R) in the nucleus accumbens (NAc) is proposed as an intermediate to long-term AMPAR plasticity associated with persistent cocaine-related behaviors. However, cell type- and input-specific contributions of GluN2B underlying lasting actions of cocaine remain to be elucidated. We utilized GluN2B cell type-specific knockouts and optogenetics to deconstruct the role of GluN2B in cocaine-induced NAc synaptic and behavioral plasticity. While reward learning was unaffected, loss of GluN2B in D1 dopamine receptor-expressing cells (D1) led to prolonged retention of reward memory. In control mice, prefrontal cortex (PFC)-D1(+) NAc AMPAR function was unaffected by cocaine exposure, while midline thalamus (mThal)-D1(+) NAc AMPAR function was potentiated but diminished after withdrawal. In D1-GluN2B-/- mice, the potentiation of mThal-D1(+) NAc AMPAR function persisted following withdrawal, corresponding with continued expression of cocaine reward behavior. These data suggest NAc GluN2B-containing NMDARs serve a feedback role and may weaken reward-related memories.


Asunto(s)
Cocaína/administración & dosificación , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/biosíntesis , Receptores de N-Metil-D-Aspartato/deficiencia , Recompensa , Tálamo/metabolismo , Animales , Eliminación de Gen , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleo Accumbens/efectos de los fármacos , Receptores de Dopamina D1/genética , Receptores de N-Metil-D-Aspartato/genética , Tálamo/efectos de los fármacos
7.
ACS Chem Neurosci ; 9(9): 2114-2126, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29280617

RESUMEN

Synaptic plasticity contributes to behavioral adaptations. As a key node in the reward pathway, the nucleus accumbens (NAc) is important for determining motivation-to-action outcomes. Across animal models of motivation including addiction, depression, anxiety, and hedonic feeding, selective recruitment of neuromodulatory signals and plasticity mechanisms have been a focus of physiologists and behaviorists alike. Experience-dependent plasticity mechanisms within the NAc vary depending on the distinct afferents and cell-types over time. A greater understanding of molecular mechanisms determining how these changes in synaptic strength track with behavioral adaptations will provide insight into the process of learning and memory along with identifying maladaptations underlying pathological behavior. Here, we summarize recent findings detailing how changes in NAc synaptic strength and mechanisms of plasticity manifest in various models of motivational disorders.


Asunto(s)
Motivación , Plasticidad Neuronal/fisiología , Núcleo Accumbens/fisiología , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Conducta Adictiva/metabolismo , Conducta Adictiva/fisiopatología , Depresión/metabolismo , Depresión/fisiopatología , Endocannabinoides/metabolismo , Conducta Alimentaria/fisiología , Ácido Glutámico/metabolismo , Humanos , Aprendizaje , Neuroglía , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatología , Péptidos Opioides/metabolismo , Receptores AMPA/metabolismo , Receptores de Cannabinoides/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/metabolismo , Recompensa , Serotonina/metabolismo
8.
Neuropsychopharmacology ; 43(10): 2075-2082, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29654259

RESUMEN

Glutamatergic transmission in the nucleus accumbens shell (NAcSh) is a substrate for reward learning and motivation. Metabotropic glutamate (mGlu) receptors regulate NAcSh synaptic strength by inducing long-term depression (LTD). Inputs from prefrontal cortex (PFC) and medio-dorsal thalamus (MDT) drive opposing motivated behaviors yet mGlu receptor regulation of these synapses is unexplored. We examined Group I mGlu receptor regulation of PFC and MDT glutamatergic synapses onto specific populations of NAc medium spiny neurons (MSNs) using D1tdTom BAC transgenic mice and optogenetics. Synaptically evoked long-term depression (LTD) at MDT-NAcSh synapses required mGlu5 but not mGlu1 and was specific for D1(+) MSNs, whereas PFC LTD was expressed at both D1(+) and D1(-) MSNs and required mGlu1 but not mGlu5. Two weeks after five daily non-contingent cocaine exposures (15 mg/kg), LTD was attenuated at MDT-D1(+) synapses but was rescued by the mGlu5-positive allosteric modulator (PAM) VU0409551. These results highlight unique plasticity mechanisms regulating specific NAcSh synapses.


Asunto(s)
Núcleo Accumbens/fisiología , Receptor del Glutamato Metabotropico 5/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Animales , Cocaína/farmacología , Femenino , Núcleo Talámico Mediodorsal/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/fisiología , Optogenética , Oxazoles/farmacología , Corteza Prefrontal/fisiología , Piridinas/farmacología , Sinapsis/fisiología , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA