Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 118: 468-479, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503395

RESUMEN

Chronic lymphocytic leukaemia (CLL) is characterised by the clonal proliferation and accumulation of mature B-cells and is often treated with rituximab, an anti-CD20 monoclonal antibody immunotherapy. Rituximab often fails to induce stringent disease eradication, due in part to failure of antibody-dependent cellular cytotoxicity (ADCC) which relies on natural killer (NK)-cells binding to rituximab-bound CD20 on B-cells. CLL cells are diffusely spread across lymphoid and other bodily tissues, and ADCC resistance in survival niches may be due to several factors including low NK-cell frequency and a suppressive stromal environment that promotes CLL cell survival. It is well established that exercise bouts induce a transient relocation of NK-cells and B-cells into peripheral blood, which could be harnessed to enhance the efficacy of rituximab in CLL by relocating both target and effector cells together with rituximab in blood. In this pilot study, n = 20 patients with treatment-naïve CLL completed a bout of cycling 15 % above anaerobic threshold for âˆ¼ 30-minutes, with blood samples collected pre-, immediately post-, and 1-hour post-exercise. Flow cytometry revealed that exercise evoked a 254 % increase in effector (CD3-CD56+CD16+) NK-cells in blood, and a 67 % increase in CD5+CD19+CD20+ CLL cells in blood (all p < 0.005). NK-cells were isolated from blood samples pre-, and immediately post-exercise and incubated with primary isolated CLL cells with or without the presence of rituximab to determine specific lysis using a calcein-release assay. Rituximab-mediated cell lysis increased by 129 % following exercise (p < 0.001). Direct NK-cell lysis of CLL cells - independent of rituximab - was unchanged following exercise (p = 0.25). We conclude that exercise improved the efficacy of rituximab-mediated ADCC against autologous CLL cells ex vivo and propose that exercise should be explored as a means of enhancing clinical responses in patients receiving anti-CD20 immunotherapy.


Asunto(s)
Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Humanos , Rituximab/farmacología , Rituximab/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Proyectos Piloto , Anticuerpos Monoclonales de Origen Murino/farmacología , Anticuerpos Monoclonales de Origen Murino/uso terapéutico
2.
Exp Physiol ; 109(7): 1099-1108, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763158

RESUMEN

The premise of research in human physiology is to explore a multifaceted system whilst identifying one or a few outcomes of interest. Therefore, the control of potentially confounding variables requires careful thought regarding the extent of control and complexity of standardisation. One common factor to control prior to testing is diet, as food and fluid provision may deviate from participants' habitual diets, yet a self-report and replication method can be flawed by under-reporting. Researchers may also need to consider standardisation of physical activity, whether it be through familiarisation trials, wash-out periods, or guidance on levels of physical activity to be achieved before trials. In terms of pharmacological agents, the ethical implications of standardisation require researchers to carefully consider how medications, caffeine consumption and oral contraceptive prescriptions may affect the study. For research in females, it should be considered whether standardisation between- or within-participants in regards to menstrual cycle phase is most relevant. The timing of measurements relative to various other daily events is relevant to all physiological research and so it can be important to standardise when measurements are made. This review summarises the areas of standardisation which we hope will be considered useful to anyone involved in human physiology research, including when and how one can apply standardisation to various contexts.


Asunto(s)
Fisiología , Humanos , Fisiología/normas , Fisiología/métodos , Proyectos de Investigación/normas , Femenino , Ciclo Menstrual/fisiología
3.
Int J Sport Nutr Exerc Metab ; 34(4): 242-250, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763509

RESUMEN

The premise of research in human physiology is to explore a multifaceted system whilst identifying one or a few outcomes of interest. Therefore, the control of potentially confounding variables requires careful thought regarding the extent of control and complexity of standardisation. One common factor to control prior to testing is diet, as food and fluid provision may deviate from participants' habitual diets, yet a self-report and replication method can be flawed by under-reporting. Researchers may also need to consider standardisation of physical activity, whether it be through familiarisation trials, wash-out periods, or guidance on levels of physical activity to be achieved before trials. In terms of pharmacological agents, the ethical implications of standardisation require researchers to carefully consider how medications, caffeine consumption and oral contraceptive prescriptions may affect the study. For research in females, it should be considered whether standardisation between- or within-participants in regards to menstrual cycle phase is most relevant. The timing of measurements relative to various other daily events is relevant to all physiological research and so it can be important to standardise when measurements are made. This review summarises the areas of standardisation which we hope will be considered useful to anyone involved in human physiology research, including when and how one can apply standardisation to various contexts.


Asunto(s)
Proyectos de Investigación , Femenino , Humanos , Investigación Biomédica/normas , Investigación Biomédica/ética , Investigación Biomédica/métodos , Cafeína/administración & dosificación , Cafeína/farmacología , Dieta , Ejercicio Físico , Ciclo Menstrual , Proyectos de Investigación/normas , Masculino
4.
PLoS Pathog ; 17(12): e1010137, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34882759

RESUMEN

Epstein Barr Virus (EBV) infects more than 95% of the population whereupon it establishes a latent infection of B-cells that persists for life under immune control. Primary EBV infection can cause infectious mononucleosis (IM) and long-term viral carriage is associated with several malignancies and certain autoimmune diseases. Current efforts developing EBV prophylactic vaccination have focussed on neutralising antibodies. An alternative strategy, that could enhance the efficacy of such vaccines or be used alone, is to generate T-cell responses capable of recognising and eliminating newly EBV-infected cells before the virus initiates its growth transformation program. T-cell responses against the EBV structural proteins, brought into the newly infected cell by the incoming virion, are prime candidates for such responses. Here we show the structural EBV capsid proteins BcLF1, BDLF1 and BORF1 are frequent targets of T-cell responses in EBV infected people, identify new CD8+ and CD4+ T-cell epitopes and map their HLA restricting alleles. Using T-cell clones we demonstrate that CD4+ but not CD8+ T-cell clones specific for the capsid proteins can recognise newly EBV-infected B-cells and control B-cell outgrowth via cytotoxicity. Using MHC-II tetramers we show a CD4+ T-cell response to an epitope within the BORF1 capsid protein epitope is present during acute EBV infection and in long-term viral carriage. In common with other EBV-specific CD4+ T-cell responses the BORF1-specific CD4+ T-cells in IM patients expressed perforin and granzyme-B. Unexpectedly, perforin and granzyme-B expression was sustained over time even when the donor had entered the long-term infected state. These data further our understanding of EBV structural proteins as targets of T-cell responses and how CD4+ T-cell responses to EBV change from acute disease into convalescence. They also identify new targets for prophylactic EBV vaccine development.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Proteínas de Unión al ADN/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Infección Latente/inmunología , Linfocitos T Citotóxicos/inmunología , Proteínas Virales/inmunología , Herpesvirus Humano 4/inmunología , Humanos , Latencia del Virus/inmunología
5.
J Physiol ; 600(4): 921-947, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33895996

RESUMEN

KEY POINTS: Ageing is associated with increased systemic inflammation and metabolic dysfunction that contributes to the development of age-associated diseases. The role of adipose tissue in immunometabolic alterations that take place with ageing is unknown in humans. We show, in healthy, active and lean older adults, that adipose tissue, but not skeletal muscle, displays considerable pro-inflammatory transcriptomic, cellular and secretory changes, as well as a reduction in insulin signalling proteins compared to younger adults. These findings indicate that adipose tissue undergoes substantial immunometabolic alterations with ageing, and that these changes are tissue-specific and more profound than those observed in skeletal muscle or in the circulation. These results identify adipose tissue as an important tissue in the biological ageing process in humans, which may exhibit signs of immunometabolic dysfunction prior to systemic manifestation. ABSTRACT: Ageing and obesity are both characterized by inflammation and a deterioration in metabolic health. It is now clear that adipose tissue plays a major role in inflammation and metabolic control in obesity, although little is known about the role of adipose tissue in human ageing. To understand how ageing impacts adipose tissue, we characterized subcutaneous adipose tissue and skeletal muscle samples from twelve younger (27 ± 4 years [Young]) and twelve older (66 ± 5 years [Old]) active/non-obese males. We performed a wide-range of whole-body and tissue measures, including RNA-sequencing and multicolour flow cytometry. We also measured a range of inflammatory and metabolic proteins in the circulation and their release by adipose tissue, ex vivo. Both adipose tissue and muscle had ∼2-fold more immune cells per gram of tissue with ageing. In adipose tissue, this immune cell infiltration was driven by increased memory/effector T-cells, whereas, in muscle, the accumulation was driven by memory/effector T-cells and macrophages. Transcriptomic analysis revealed that, with ageing, adipose tissue, but not muscle, was enriched for inflammatory transcripts/pathways related to acquired and innate immunity. Ageing also increased the adipose tissue pro-inflammatory secretory profile. Insulin signalling protein content was reduced in adipose tissue, but not muscle. Our findings indicate that adipose tissue undergoes substantial immunometabolic changes with ageing in humans, and that these changes are tissue-specific and more profound than those observed in the circulation and skeletal muscle.


Asunto(s)
Resistencia a la Insulina , Tejido Adiposo/metabolismo , Anciano , Envejecimiento , Humanos , Masculino , Músculo Esquelético/metabolismo , Obesidad/metabolismo
6.
Exerc Immunol Rev ; 28: 1-35, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35452398

RESUMEN

BACKGROUND: The complement system is comprised of the classical, lectin and alternative pathways that result in the formation of: pro-inflammatory anaphylatoxins; opsonins that label cells for phagocytic removal; and, a membrane attack complex that directly lyses target cells. Complement-dependent cytotoxicity (CDC) - cell lysis triggered by complement protein C1q binding to the Fc region of antibodies bound to target cells - is another effector function of complement and a key mechanism-of-action of several monoclonal antibody therapies. At present, it is not well established how exercise affects complement system proteins in humans. METHODS: A systematic search was conducted to identify studies that included original data and investigated the association between soluble complement proteins in the blood of healthy humans, and: 1) an acute bout of exercise; 2) exercise training interventions; or, 3) measurements of habitual physical activity and fitness. RESULTS: 77 studies were eligible for inclusion in this review, which included a total of 10,236 participants, and 40 complement proteins and constituent fragments. Higher levels of exercise training and cardiorespiratory fitness were commonly associated with reduced C3 in blood. Additionally, muscle strength was negatively associated with C1q. Elevated C3a-des-Arg, C4a-des-Arg and C5a, lower C1-inhibitor, and unchanged C3 and C4 were reported immediately post-laboratory based exercise, compared to baseline. Whereas, ultra-endurance running and resistance training increased markers of the alternative (factor B and H), classical (C1s), and leptin (mannose binding lectin) pathways, as well as C3 and C6 family proteins, up to 72-h following exercise. Heterogeneity among studies may be due to discrepancies in blood sampling/handling procedures, analytical techniques, exercise interventions/measurements and fitness of included populations. CONCLUSIONS: Increased anaphylatoxins were observed immediately following an acute bout of exercise in a laboratory setting, whereas field-based exercise interventions of a longer duration (e.g. ultra-endurance running) or designed to elicit muscle damage (e.g. resistance training) increased complement proteins for up to 72-h. C3 in blood was mostly reduced by exercise training and associated with increased cardiorespiratory fitness, whereas C1q appeared to be negatively associated to muscle strength. Thus, both acute bouts of exercise and exercise training appear to modulate complement system proteins. Future research is needed to assess the clinical implications of these changes, for example on the efficacy of monoclonal antibody therapies dependent on CDC.


Asunto(s)
Complemento C1q , Ejercicio Físico , Anafilatoxinas , Anticuerpos Monoclonales , Proteínas del Sistema Complemento , Humanos
7.
J Sport Exerc Psychol ; 44(6): 427-438, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36450294

RESUMEN

This study addressed whether lifetime stressor exposure was associated with psychophysiological reactivity and habituation to a novel laboratory-based stressor. Eighty-six participants (Mage = 23.31 years, SD = 4.94) reported their exposure to lifetime non-sport and sport-specific stressors before completing two consecutive trials of the Trier Social Stress Test, while cardiovascular (i.e., heart rate) and endocrine (i.e., salivary cortisol) data were recorded. Exposure to a moderate number of lifetime non-sport and sport-specific stressors was associated with adaptive cardiovascular reactivity, whereas very low or very high stressor exposure was related to maladaptive reactivity. Moreover, experiencing a very low number of lifetime non-sport (but not sport-specific) stressors was associated with poorer habituation. In contrast, lifetime stressor severity was unrelated to cardiovascular reactivity. Finally, greater lifetime non-sport and sport-specific stressor counts were associated with blunted cortisol reactivity and poorer habituation. These results suggest that lifetime stressor exposure may influence sport performers' acute stress responses.


Asunto(s)
Habituación Psicofisiológica , Deportes , Humanos , Hidrocortisona , Frecuencia Cardíaca
8.
J Sports Sci ; 39(1): 64-77, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32851916

RESUMEN

Organizational stressors can undermine the psychological well-being and performance of athletes. Less is known, however, about how these relationships unfold over time and whether organizational stressors can impact upon perceived physical health. The current study, therefore, used a repeated-measures design to examine relationships between organizational stressors with components of perceived psychological (anxiety and depression) and physical (illness symptoms and missed training days via illness) ill-health, and perceived performance at the within-person level. Twenty-three semi-elite female rowers completed monthly measures of study variables for six-months. Multilevel models indicated that selection-related stressors positively predicted symptoms of perceived psychological and physical ill-health, and negatively predicted perceived performance. Conversely, coaching stressors negatively predicted symptoms of perceived psychological ill-health. Logistics and operations stressors positively predicted perceived performance, whereas goals and development stressors negatively predicted perceived performance. These findings demonstrate for the first time that, with a repeated-measures design, organizational stressors can predict components of perceived physical and psychological ill-health, and perceived performance at the within-person level in athletes. From a practical perspective, practitioners should incorporate these findings when diagnosing the need for, developing, and optimally implementing primary and secondary stress management interventions.


Asunto(s)
Ansiedad/psicología , Atletas/psicología , Rendimiento Atlético/psicología , Depresión/psicología , Estrés Psicológico/psicología , Deportes Acuáticos/psicología , Enfermedad Aguda , Adolescente , Adulto , Femenino , Humanos , Cultura Organizacional , Reproducibilidad de los Resultados , Estrés Psicológico/epidemiología , Evaluación de Síntomas/métodos , Evaluación de Síntomas/estadística & datos numéricos , Deportes de Equipo , Factores de Tiempo , Deportes Acuáticos/fisiología , Adulto Joven
9.
Exerc Immunol Rev ; 26: 8-22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32139352

RESUMEN

Multiple studies in humans and animals have demonstrated the profound impact that exercise can have on the immune system. There is a general consensus that regular bouts of short-lasting (i.e. up to 45 minutes) moderate intensity exercise is beneficial for host immune defense, particularly in older adults and people with chronic diseases. In contrast, infection burden is reported to be high among high performance athletes and second only to injury for the number of training days lost during preparation for major sporting events. This has shaped the common view that arduous exercise (i.e. those activities practiced by high performance athletes/ military personnel that greatly exceed recommended physical activity guidelines) can suppress immunity and increase infection risk. However, the idea that exercise per se can suppress immunity and increase infection risk independently of the many other factors (e.g. anxiety, sleep disruption, travel, exposure, nutritional deficits, environmental extremes, etc.) experienced by these populations has recently been challenged. The purpose of this debate article was to solicit opposing arguments centered around this fundamental question in the exercise immunology field: can exercise affect immune function to increase susceptibility to infection. Issues that were contested between the debating groups include: (i) whether or not athletes are more susceptible to infection (mainly of the upper respiratory tract) than the general population; (ii) whether exercise per se is capable of altering immunity to increase infection risk independently of the multiple factors that activate shared immune pathways and are unique to the study populations involved; (iii) the usefulness of certain biomarkers and the interpretation of in vitro and in vivo data to monitor immune health in those who perform arduous exercise; and (iv) the quality of scientific evidence that has been used to substantiate claims for and against the potential negative effects of arduous exercise on immunity and infection risk. A key point of agreement between the groups is that infection susceptibility has a multifactorial underpinning. An issue that remains to be resolved is whether exercise per se is a causative factor of increased infection risk in athletes. This article should provide impetus for more empirical research to unravel the complex questions that surround this contentious issue in the field of exercise immunology.


Asunto(s)
Susceptibilidad a Enfermedades/inmunología , Ejercicio Físico , Inmunidad , Infecciones/inmunología , Animales , Atletas , Humanos , Sistema Inmunológico
10.
Gerontology ; 66(5): 431-438, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32585674

RESUMEN

Social distancing has been adopted worldwide to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Social isolation is likely to lead to a decline in physical activity, which could result in immune system dysfunction, thereby increasing infection susceptibility and exacerbating the pathophysiology of conditions that are common among older adults, including cardiovascular disease, cancer, and inflammatory disorders. Older adults and people living with these comorbidities are at a greater risk for complications during coronavirus disease 2019 (COVID-19). In this review, we discuss the negative impact of physical inactivity on immune function and showcase evidence that regular physical activity may be an effective strategy to counter some of the deleterious effects of social isolation. Furthermore, we briefly highlight key research questions in exercise immunology, with a focus on older adults in the context of COVID-19. Although it is worth emphasizing that there is no direct evidence that physical activity can prevent or treat -COVID-19, promoting an active lifestyle is a key intervention to counteract the effects of social isolation, especially in older adults and other at-risk individuals, such as those living with chronic diseases associated with ageing and lifestyle.


Asunto(s)
Betacoronavirus , Control de Enfermedades Transmisibles , Infecciones por Coronavirus/prevención & control , Ejercicio Físico/fisiología , Inmunosenescencia/fisiología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Conducta Sedentaria , Anciano , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Humanos , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , SARS-CoV-2 , Aislamiento Social
11.
J Aging Phys Act ; 25(4): 559-569, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28181836

RESUMEN

To examine whether the volume of previous exercise training in older athletes influences inflammatory, redox, and hormonal profiles, 40 trained marathon runners were divided into higher-volume (HVG, ∼480 min/week) and lower-volume groups (LVG, ∼240 min/week). Plasma inflammatory proteins, redox biomarkers, salivary testosterone, and cortisol were assessed at restand following two maximal acute exercise bouts. At rest, the LVG exhibited higher CRP, higher protein carbonyls, and lower SOD activity compared to the HVG (p's < .05). In response to exercise, TNF-α declined similarly in both groups whereas CRP increased differentially (+60% LVG; +24% HVG; p's < .05). Protein carbonyls decreased and thiols increased similarly in both groups, but SOD declined differentially between groups (-14% LVG; -20% HVG; p's < .05). Salivary testosterone decreased similarly in both groups, whereas cortisol did not change. A higher volume of training is associated with favorable inflammatory and redox profiles at rest, perhaps mediated by small inflammatory responses to acute exercise.


Asunto(s)
Envejecimiento/fisiología , Proteína C-Reactiva/análisis , Ejercicio Físico/fisiología , Hidrocortisona/sangre , Testosterona/análisis , Factor de Necrosis Tumoral alfa/sangre , Anciano , Atletas , Biomarcadores/análisis , Biomarcadores/sangre , Prueba de Esfuerzo/métodos , Femenino , Humanos , Masculino , Resistencia Física , Entrenamiento de Fuerza/métodos , Carrera/fisiología , Estadística como Asunto
12.
Biogerontology ; 17(3): 581-602, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27023222

RESUMEN

The age-associated decline in immune function, referred to as immunosenescence, is well characterised within the adaptive immune system, and in particular, among T cells. Hallmarks of immunosenescence measured in the T cell pool, include low numbers and proportions of naïve cells, high numbers and proportions of late-stage differentiated effector memory cells, poor proliferative responses to mitogens, and a CD4:CD8 ratio <1.0. These changes are largely driven by infection with Cytomegalovirus, which has been directly linked with increased inflammatory activity, poor responses to vaccination, frailty, accelerated cognitive decline, and early mortality. It has been suggested however, that exercise might exert an anti-immunosenescence effect, perhaps delaying the onset of immunological ageing or even rejuvenating aged immune profiles. This theory has been developed on the basis of evidence that exercise is a powerful stimulus of immune function. For example, in vivo antibody responses to novel antigens can be improved with just minutes of exercise undertaken at the time of vaccination. Further, lymphocyte immune-surveillance, whereby cells search tissues for antigens derived from viruses, bacteria, or malignant transformation, is thought to be facilitated by the transient lymphocytosis and subsequent lymphocytopenia induced by exercise bouts. Moreover, some forms of exercise are anti-inflammatory, and if repeated regularly over the lifespan, there is a lower morbidity and mortality from diseases with an immunological and inflammatory aetiology. The aim of this article is to discuss recent theories for how exercise might influence T cell immunosenescence, exploring themes in the context of hotly debated issues in immunology.


Asunto(s)
Ejercicio Físico , Inmunosenescencia/inmunología , Esfuerzo Físico/inmunología , Sarcopenia/inmunología , Sarcopenia/prevención & control , Linfocitos T/inmunología , Medicina Basada en la Evidencia , Terapia por Ejercicio/normas , Humanos , Inmunidad Innata/inmunología , Modelos Inmunológicos , Resultado del Tratamiento
13.
Biochem Soc Trans ; 42(4): 989-95, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25109991

RESUMEN

Ultra-endurance races are extreme exercise events that can take place over large parts of a day, several consecutive days or over weeks and months interspersed by periods of rest and recovery. Since the first ultra-endurance races in the late 1970s, around 1000 races are now held worldwide each year, and more than 100000 people take part. Although these athletes appear to be fit and healthy, there have been occasional reports of severe complications following ultra-endurance exercise. Thus there is concern that repeated extreme exercise events could have deleterious effects on health, which might be brought about by the high levels of ROS (reactive oxygen species) produced during exercise. Studies that have examined biomarkers of oxidative damage following ultra-endurance exercise have found measurements to be elevated for several days, which has usually been interpreted to reflect increased ROS production. Levels of the antioxidant molecule GSH (reduced glutathione) are depleted for 1 month or longer following ultra-endurance exercise, suggesting an impaired capacity to cope with ROS. The present paper summarizes studies that have examined the oxidative footprint of ultra-endurance exercise in light of current thinking in redox biology and the possible health implications of such extreme exercise.


Asunto(s)
Ejercicio Físico/fisiología , Alergia e Inmunología , Animales , Biología , Glutatión/metabolismo , Humanos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
14.
Brain Behav Immun ; 39: 211-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24120932

RESUMEN

The present study examined whether a high protein diet prevents the impaired leukocyte redistribution in response to acute exercise caused by a large volume of high-intensity exercise training. Eight cyclists (VO2max: 64.2±6.5mLkg(-1)min(-1)) undertook two separate weeks of high-intensity training while consuming either a high protein diet (3gkg(-1)proteinBM(-1)day(-1)) or an energy and carbohydrate-matched control diet (1.5gkg(-1)proteinBM(-1)day(-1)). High-intensity training weeks were preceded by a week of normal-intensity training under the control diet. Leukocyte and lymphocyte sub-population responses to acute exercise were determined at the end of each training week. Self-reported symptoms of upper-respiratory tract infections (URTI) were monitored daily by questionnaire. Undertaking high-intensity training with a high protein diet restored leukocyte kinetics to similar levels observed during normal-intensity training: CD8(+) TL mobilization (normal-intensity: 29,319±13,130cells/µL×∼165min vs. high-intensity with protein: 26,031±17,474cells/µL×∼165min, P>0.05), CD8(+) TL egress (normal-intensity: 624±264cells/µL vs. high-intensity with protein: 597±478cells/µL, P>0.05). This pattern was driven by effector-memory populations mobilizing (normal-intensity: 6,145±6,227cells/µL×∼165min vs. high-intensity with protein: 6,783±8,203cells/µL×∼165min, P>0.05) and extravastating from blood (normal-intensity: 147±129cells/µL vs. high-intensity with protein: 165±192cells/µL, P>0.05). High-intensity training while consuming a high protein diet was associated with fewer symptoms of URTI compared to performing high-intensity training with a normal diet (P<0.05). To conclude, a high protein diet might reduce the incidence of URTI in athletes potentially mediated by preventing training-induced impairments in immune-surveillance.


Asunto(s)
Linfocitos T CD8-positivos/efectos de los fármacos , Proteínas en la Dieta/uso terapéutico , Ejercicio Físico/fisiología , Leucocitos/efectos de los fármacos , Infecciones del Sistema Respiratorio/prevención & control , Adulto , Atletas , Movimiento Celular/efectos de los fármacos , Estudios Cruzados , Humanos , Incidencia , Leucocitos/metabolismo , Masculino , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/inmunología , Adulto Joven
15.
Biogerontology ; 14(1): 9-20, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23283592

RESUMEN

There is evidence suggesting that immunosenescence can be accelerated by external factors such as chronic stress. Here we review potential psychoneuroendocrine determinants of premature aging of the immune system and discuss available interventions aimed at attenuating immunosenescence. Chronic stress may accelerate various features of immunosenescence by activating key allostatic systems, notably the hypothalamic-pituitary-adrenal axis. The immunological impact of such neuroendocrine dysregulation may be further amplified by a dramatic decline in dehydroepiandrosterone (DHEA) levels, acting in part as an endogenous glucocorticoid antagonist. Stress-buffering strategies show beneficial effects on various biomarkers in elderly populations. Likewise, supplementation of DHEA, melatonin or growth hormone has yielded significant beneficial effects in a number of studies, including: increased well-being, memory performance, bone mineral density and improved immunocompetence as evidenced by results of in vitro (T cell proliferation, cytotoxicity, cytokine production), and in vivo immune challenges. However, the side-effects of hormonal supplementation are also discussed. Finally, moderate exercise via the promotion of cortisol/DHEA balance or epigenetic modifications, is associated with lower serum pro-inflammatory cytokines, greater lymphoproliferative responses and lower counts of senescent T cells. Taken together, these data suggest that immune system is plastic and immunosenescence can be attenuated psychoneuroendocrine interventions.


Asunto(s)
Envejecimiento/inmunología , Envejecimiento/fisiología , Envejecimiento/psicología , Envejecimiento Prematuro/fisiopatología , Envejecimiento Prematuro/psicología , Envejecimiento Prematuro/terapia , Deshidroepiandrosterona/administración & dosificación , Femenino , Ghrelina/uso terapéutico , Hormona de Crecimiento Humana/uso terapéutico , Humanos , Masculino , Melatonina/uso terapéutico , Actividad Motora , Neuroinmunomodulación/fisiología , Sistemas Neurosecretores/inmunología , Sistemas Neurosecretores/fisiología , Apoyo Social , Estrés Fisiológico/inmunología
16.
Gen Comp Endocrinol ; 189: 33-42, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23631900

RESUMEN

The presence of a robust estrogen (E2) response system throughout heart and blood vessel tissues of vertebrates, including humans, has led to the speculation that this ubiquitous hormone may play a prominent role in the health and maintenance of the adult cardiovascular system (CVS). We previously established an embryonic zebrafish model called 'listless', which results from the inhibition of E2 synthesis by treatment with aromatase enzyme inhibitors (AI). These fish have outward symptoms similar to the human condition of congestive heart failure and tamponade. E2 replacement therapy (1) reduced the severity of cardiac sac abnormalities, (2) protected heart function, (3) prevented reduction in heart size, and (4) reduced blood vessel deterioration. Nitric oxide may be a critical downstream mediator of these events. We also demonstrate that removal of fluid around the heart increases survival of AI-treated fish. These results strongly indicate the importance of E2 in the developing CVS of the zebrafish and offer a potential model for the study of its role in CVS development, maintenance, and disease conditions.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Sistema Cardiovascular/efectos de los fármacos , Estrógenos/farmacología , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Sistema Cardiovascular/metabolismo , Corazón/efectos de los fármacos , Corazón/embriología , Óxido Nítrico/metabolismo
17.
Front Sports Act Living ; 5: 1163182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252426

RESUMEN

Methods: This study examined the effects of exercise training for 8 weeks on blood immune cell characteristics among 20 breast cancer survivors (age 56 ± 6 years, Body Mass Index 25.4 ± 3.0 kg m2) within two years of treatment. Participants were randomly allocated to a partly-supervised or a remotely-supported exercise group (n = 10 each). The partly supervised group undertook 2 supervised (laboratory-based treadmill walking and cycling) and 1 unsupervised session per week (outdoor walking) progressing from 35 to 50 min and 55% to 70% V˙O2max. The remotely-supported group received weekly exercise/outdoor walking targets (progressing from 105 to 150 min per week 55% to 70% V˙O2max) via weekly telephone calls discussing data from a fitness tracker. Immune cell counts were assessed using flow cytometry: CD4+ and CD8+ T cells (Naïve, NA; Central memory, CM; and Effector cells, EM and EMRA; using CD27/CD45RA), Stem cell-like memory T cells (TSCMs; using CD95/CD127), B cells (plasmablasts, memory, immature and naïve cells using CD19/CD27/CD38/CD10) and Natural Killer cells (effector and regulatory cells, using CD56/CD16). T cell function was assessed by unstimulated HLA-DR expression or interferon gamma (IFN-γ) production with Enzyme-linked ImmunoSpot assays following stimulation with virus or tumour-associated antigens. Results: Total leukocyte counts, lymphocytes, monocytes and neutrophils did not change with training (p > 0.425). Most CD4+ and CD8+ T cell subtypes, including TSCMs, and B cell and NK cell subtypes did not change (p > 0.127). However, across groups combined, the CD4+ EMRA T cell count was lower after training (cells/µl: 18 ± 33 vs. 12 ± 22, p = 0.028) and these cells were less activated on a per cell basis (HLA-DR median fluorescence intensity: 463 ± 138 vs. 420 ± 77, p = 0.018). Furthermore, the partly-supervised group showed a significant decrease in the CD4+/CD8+ ratio (3.90 ± 2.98 vs. 2.54 ± 1.29, p = 0.006) and a significant increase of regulatory NK cells (cells/µl: 16 ± 8 vs. 21 ± 10, p = 0.011). T cell IFN-γ production did not change with exercise training (p > 0.515). Discussion: In summary, most immune cell characteristics are relatively stable with 8 weeks of exercise training among breast cancer survivors. The lower counts and activation of CD4+ EMRA T cells, might reflect an anti-immunosenescence effect of exercise.

18.
Front Physiol ; 14: 1107070, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324393

RESUMEN

Methods: We examined whether immune cell profiles differ between healthy women (n = 38) and breast cancer survivors (n = 27) within 2 years of treatment, and whether any group-differences were influenced by age, cytomegalovirus infection, cardiorespiratory fitness and body composition. Using flow cytometry, CD4+ and CD8+ T cell subsets, including naïve (NA), central memory (CM) and effector cells (EM and EMRA) were identified using CD27/CD45RA. Activation was measured by HLA-DR expression. Stem cell-like memory T cells (TSCMs) were identified using CD95/CD127. B cells, including plasmablasts, memory, immature and naïve cells were identified using CD19/CD27/CD38/CD10. Effector and regulatory Natural Killer cells were identified using CD56/CD16. Results: Compared to healthy women, CD4+ CM were +Δ21% higher among survivors (p = 0.028) and CD8+ NA were -Δ25% lower (p = 0.034). Across CD4+ and CD8+ subsets, the proportion of activated (HLA-DR+) cells was +Δ31% higher among survivors: CD4+ CM (+Δ25%), CD4+ EM (+Δ32%) and CD4+ EMRA (+Δ43%), total CD8+ (+Δ30%), CD8+ EM (+Δ30%) and CD8+ EMRA (+Δ25%) (p < 0.046). The counts of immature B cells, NK cells and CD16+ NK effector cells were higher among survivors (+Δ100%, +Δ108% and +Δ143% respectively, p < 0.04). Subsequent analyses examined whether statistically significant differences in participant characteristics, influenced immunological differences between groups. Compared to healthy women, survivors were older (56 ± 6 y vs. 45 ± 11 y), had lower cardiorespiratory fitness (V˙O2max mL kg-1 min-1: 28.8 ± 5.0 vs. 36.2 ± 8.5), lower lean mass (42.3 ± 5.0 kg vs. 48.4 ± 15.8 kg), higher body fat (36.3% ± 5.3% vs. 32.7% ± 6.4%) and higher fat mass index (FMI kg/m2: 9.5 ± 2.2 vs. 8.1 ± 2.7) (all p < 0.033). Analysis of covariance revealed divergent moderating effects of age, CMV serostatus, cardiorespiratory fitness and body composition on the differences in immune cell profiles between groups, depending on the cell type examined. Moreover, across all participants, fat mass index was positively associated with the proportion of HLA-DR+ CD4+ EMRA and CD8+ EM/EMRA T cells (Pearson correlation: r > 0.305, p < 0.019). The association between fat mass index and HLA-DR+ CD8+ EMRA T cells withstood statistical adjustment for all variables, including age, CMV serostatus, lean mass and cardiorespiratory fitness, potentially implicating these cells as contributors to inflammatory/immune-dysfunction in overweight/obesity.

19.
Front Oncol ; 13: 1244090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37681023

RESUMEN

Therapeutic monoclonal antibodies (mAbs) are standard care for many B-cell haematological cancers. The modes of action for these mAbs include: induction of cancer cell lysis by activating Fcγ-receptors on innate immune cells; opsonising target cells for antibody-dependent cellular cytotoxicity or phagocytosis, and/or triggering the classical complement pathway; the simultaneous binding of cancer cells with T-cells to create an immune synapse and activate perforin-mediated T-cell cytotoxicity against cancer cells; blockade of immune checkpoints to facilitate T-cell cytotoxicity against immunogenic cancer cell clones; and direct delivery of cytotoxic agents via internalisation of mAbs by target cells. While treatment regimens comprising mAb therapy can lead to durable anti-cancer responses, disease relapse is common due to failure of mAb therapy to eradicate minimal residual disease. Factors that limit mAb efficacy include: suboptimal effector cell frequencies, overt immune exhaustion and/or immune anergy, and survival of diffusely spread tumour cells in different stromal niches. In this review, we discuss how immunomodulatory changes arising from exposure to structured bouts of acute exercise might improve mAb treatment efficacy by augmenting (i) antibody-dependent cellular cytotoxicity, (ii) antibody-dependent cellular phagocytosis, (iii) complement-dependent cytotoxicity, (iv) T-cell cytotoxicity, and (v) direct delivery of cytotoxic agents.

20.
Clin Nutr ; 42(4): 532-540, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36857962

RESUMEN

BACKGROUND & AIMS: It is unclear if dietary adjustments to maintain energy balance during reduced physical activity can offset inactivity-induced reductions in insulin sensitivity and glucose disposal to produce normal daily glucose concentrations and meal responses. Therefore, the aim of the present study was to examine the impact of long-term physical inactivity (60 days of bed rest) on daily glycemia when in energy balance. METHODS: Interstitial glucose concentrations were measured using Continuous Glucose Monitoring Systems (CGMS) for 5 days before and towards the end of bed rest in 20 healthy, young males (Age: 34 ± 8 years; BMI: 23.5 ± 1.8 kg/m2). Energy intake was reduced during bed rest to match energy expenditure, but the types of foods and timing of meals was maintained. Fasting venous glucose and insulin concentrations were determined, as well as the change in whole-body glucose disposal using a hyperinsulinemic-euglycemic clamp (HIEC). RESULTS: Following long-term bed rest, fasting plasma insulin concentration increased 40% (p = 0.004) and glucose disposal during the HIEC decreased 24% (p < 0.001). Interstitial daily glucose total area under the curve (tAUC) from pre-to post-bed rest increased on average by 6% (p = 0.041), despite a 20 and 25% reduction in total caloric and carbohydrate intake, respectively. The nocturnal period (00:00-06:00) showed the greatest change to glycemia with glucose tAUC for this period increasing by 9% (p = 0.005). CGMS measures of daily glycemic variability (SD, J-Index, M-value and MAG) were not changed during bed rest. CONCLUSIONS: Reduced physical activity (bed rest) increases glycemia even when daily energy intake is reduced to maintain energy balance. However, the disturbance to daily glucose homeostasis was much more modest than the reduced capacity to dispose of glucose, and glycemic variability was not negatively affected by bed rest, likely due to positive mitigating effects from the contemporaneous reduction in dietary energy and carbohydrate intake. CLINICAL TRIALS RECORD: NCT03594799 (registered July 20, 2018) (https://clinicaltrials.gov/ct2/show/NCT03594799).


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Glucemia , Humanos , Masculino , Adulto , Conducta Sedentaria , Dieta , Insulina , Glucosa , Ingestión de Energía , Metabolismo Energético/fisiología , Homeostasis , Reposo en Cama
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA