RESUMEN
Landscapes form by the erosion and deposition of sediment, driven by tectonic and climatic forcing. The principal geomorphic processes of badland - landsliding, debris flow and runoff erosion - are similar to those in full scale mountain topography, but operate faster. Here, we show that in the badlands of SW Taiwan, individual rainfall events cause quantifiable landscape change, distinct for the type of rainfall. Typhoon rain reduced hillslope gradients, while lower-intensity precipitation either steepened or flattened the landscape, depending on its initial topography. The steep topography observed in our first survey is inconsistent with the effects of any of the rainfall events. We suggest that it is due to the 2016 Mw 6.4 Meinong earthquake. The observed pattern in the badlands was mirrored in the response of the Taiwan mountain topography to typhoon Morakot in 2009, confirming that badlands offer special opportunities to quantify natural landscape dynamics on observational time scales.
RESUMEN
One of the most conspicuous features of a mountain belt is the main drainage divide. Divide location is influenced by a number of parameters, including tectonic uplift and horizontal advection. Thus, the topography of mountain belts can be used as an archive to extract tectonic information. Here we combine numerical landscape evolution modelling and analytical solutions to demonstrate that mountain asymmetry, determined by the location of the main drainage divide, increases with increasing uplift gradient and advection velocity. Then, we provide a conceptual framework to constrain the present or previous tectonic uplift and advection of a mountain belt from the location and migration direction of its main drainage divide. Furthermore, we apply our model to Wula Shan horst, Northeastern Sicily, and Southern Taiwan.