Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Therm Biol ; 49-50: 55-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774027

RESUMEN

Heat acclimation requires the interaction between hot environments and exercise to elicit thermoregulatory adaptations. Optimal synergism between these parameters is unknown. Common practise involves utilising a fixed workload model where exercise prescription is controlled and core temperature is uncontrolled, or an isothermic model where core temperature is controlled and work rate is manipulated to control core temperature. Following a baseline heat stress test; 24 males performed a between groups experimental design performing short term heat acclimation (STHA; five 90 min sessions) and long term heat acclimation (LTHA; STHA plus further five 90 min sessions) utilising either fixed intensity (50% VO2peak), continuous isothermic (target rectal temperature 38.5 °C for STHA and LTHA), or progressive isothermic heat acclimation (target rectal temperature 38.5 °C for STHA, and 39.0 °C for LTHA). Identical heat stress tests followed STHA and LTHA to determine the magnitude of adaptation. All methods induced equal adaptation from baseline however isothermic methods induced adaptation and reduced exercise durations (STHA = -66% and LTHA = -72%) and mean session intensity (STHA = -13% VO2peak and LTHA = -9% VO2peak) in comparison to fixed (p < 0.05). STHA decreased exercising heart rate (-10 b min(-1)), core (-0.2 °C) and skin temperature (-0.51 °C), with sweat losses increasing (+0.36 Lh(-1)) (p<0.05). No difference between heat acclimation methods, and no further benefit of LTHA was observed (p > 0.05). Only thermal sensation improved from baseline to STHA (-0.2), and then between STHA and LTHA (-0.5) (p<0.05). Both the continuous and progressive isothermic methods elicited exercise duration, mean session intensity, and mean T(rec) analogous to more efficient administration for maximising adaptation. Short term isothermic methods are therefore optimal for individuals aiming to achieve heat adaptation most economically, i.e. when integrating heat acclimation into a pre-competition taper. Fixed methods may be optimal for military and occupational applications due to lower exercise intensity and simplified administration.


Asunto(s)
Aclimatación , Regulación de la Temperatura Corporal , Calor , Adulto , Humanos , Masculino , Estrés Fisiológico , Factores de Tiempo , Adulto Joven
2.
Eur J Appl Physiol ; 113(1): 109-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22592455

RESUMEN

Heat acclimation (HA) can improve thermoregulatory stability in able-bodied athletes in part by an enhanced sweat response. Athletes with spinal cord lesion are unable to sweat below the lesion and it is unknown if they can HA. Five paralympic shooting athletes with spinal cord lesion completed seven consecutive days HA in hot conditions (33.4 ± 0.6 °C, 64.8 ± 3.7 %rh). Each HA session consisted of 20 min arm crank exercise at 50 % [Formula: see text] followed by 40 min rest, or simulated shooting. Aural temperature (T (aur)) was recorded throughout. Body mass was assessed before and after each session and a sweat collection swab was fixed to T12 of the spine. Fingertip whole blood was sampled at rest on days 1 and 7 for estimation of the change in plasma volume. Resting T (aur) declined from 36.3 ± 0.2 °C on day 1 to 36.0 ± 0.2 °C by day 6 (P < 0.05). During the HA sessions mean, T (aur) declined from 37.2 ± 0.2 °C on day 1, to 36.7 ± 0.3 °C on day 7 (P < 0.05). Plasma volume increased from day 1 by 1.5 ± 0.6 % on day 7 (P < 0.05). No sweat secretion was detected or changes in body mass observed from any participant. Repeated hyperthermia combined with limited evaporative heat loss was sufficient to increase plasma volume, probably by alterations in fluid regulatory hormones. In conclusion, we found that although no sweat response was observed, athletes with spinal cord lesion could partially HA.


Asunto(s)
Aclimatación , Regulación de la Temperatura Corporal , Ejercicio Físico , Traumatismos de la Médula Espinal/fisiopatología , Deportes , Adulto , Calor , Humanos
3.
Front Physiol ; 8: 473, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28747888

RESUMEN

The leukocyte heat shock response (HSR) is used to determine individual's thermotolerance. The HSR and thermotolerance are enhanced following interventions such as preconditioning and/or acclimation/acclimatization. However, it is unclear whether the leukocyte HSR is an appropriate surrogate for the HSR in other tissues implicated within the pathophysiology of exertional heat illnesses (e.g., skeletal muscle), and whether an acute preconditioning strategy (e.g., downhill running) can improve subsequent thermotolerance. Physically active, non-heat acclimated participants were split into two groups to investigate the benefits of hot downhill running as preconditioning strategy. A hot preconditioning group (HPC; n = 6) completed two trials (HPC1HOTDOWN and HPC2HOTDOWN) of 30 min running at lactate threshold (LT) on -10% gradient in 30°C and 50% relative humidity (RH) separated by 7 d. A temperate preconditioning group (TPC; n = 5) completed 30 min running at LT on a -1% gradient in 20°C and 50% (TPC1TEMPFLAT) and 7 d later completed 30 min running at LT on -10% gradient in 30°C and 50% RH (TPC2HOTDOWN). Venous blood samples and muscle biopsies (vastus lateralis; VL) were obtained before, immediately after, 3, 24, and 48 h after each trial. Leukocyte and VL Hsp72, Hsp90α, and Grp78 mRNA relative expression was determined via RT-QPCR. Attenuated leukocyte and VL Hsp72 (2.8 to 1.8 fold and 5.9 to 2.4 fold; p < 0.05) and Hsp90α mRNA (2.9 to 2.4 fold and 5.2 to 2.4 fold; p < 0.05) responses accompanied reductions (p < 0.05) in physiological strain [exercising rectal temperature (-0.3°C) and perceived muscle soreness (~ -14%)] during HPC2HOTDOWN compared to HPC1HOTDOWN (i.e., a preconditioning effect). Both VL and leukocyte Hsp72 and Hsp90α mRNA increased (p < 0.05) simultaneously following downhill runs and demonstrated a strong relationship (p < 0.01) of similar magnitudes with one another. Hot downhill running is an effective preconditioning strategy which ameliorates physiological strain, soreness and Hsp72 and Hsp90α mRNA responses to a subsequent bout. Leukocyte and VL analyses are appropriate tissues to infer the extent to which the HSR has been augmented.

4.
Cell Stress Chaperones ; 21(6): 1021-1035, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27511024

RESUMEN

Increased intracellular heat shock protein-72 (Hsp72) and heat shock protein-90α (Hsp90α) have been implicated as important components of acquired thermotolerance, providing cytoprotection during stress. This experiment determined the physiological responses characterising increases in Hsp72 and Hsp90α mRNA on the first and tenth day of 90-min heat acclimation (in 40.2 °C, 41.0 % relative humidity (RH)) or equivalent normothermic training (in 20 °C, 29 % RH). Pearson's product-moment correlation and stepwise multiple regression were performed to determine relationships between physiological [e.g. (Trec, sweat rate (SR) and heart rate (HR)] and training variables (exercise duration, exercise intensity, work done), and the leukocyte Hsp72 and Hsp90α mRNA responses via reverse transcription quantitative polymerase chain reaction (RT-QPCR) (n = 15). Significant (p < 0.05) correlations existed between increased Hsp72 and Hsp90α mRNA (r = 0.879). Increased core temperature was the most important criteria for gene transcription with ΔTrec (r = 0.714), SR (r = 0.709), Trecfinal45 (r = 0.682), area under the curve where Trec ≥ 38.5 °C (AUC38.5 °C; r = 0.678), peak Trec (r = 0.661), duration Trec ≥ 38.5 °C (r = 0.650) and ΔHR (r = 0.511) each demonstrating a significant (p < 0.05) correlation with the increase in Hsp72 mRNA. The Trec AUC38.5 °C (r = 0.729), ΔTrec (r = 0.691), peak Trec (r = 0.680), Trecfinal45 (r = 0.678), SR (r = 0.660), duration Trec ≥ 38.5 °C (r = 0.629), the rate of change in Trec (r = 0.600) and ΔHR (r = 0.531) were the strongest correlate with the increase in Hsp90α mRNA. Multiple regression improved the model for Hsp90α mRNA only, when Trec AUC38.5 °C and SR were combined. Training variables showed insignificant (p > 0.05) weak (r < 0.300) relationships with Hsp72 and Hsp90α mRNA. Hsp72 and Hsp90α mRNA correlates were comparable on the first and tenth day. When transcription of the related Hsp72 and Hsp90α mRNA is important, protocols should rapidly induce large, prolonged changes in core temperature.


Asunto(s)
Proteínas del Choque Térmico HSP72/genética , Proteínas HSP90 de Choque Térmico/genética , ARN Mensajero/metabolismo , Adulto , Área Bajo la Curva , Ejercicio Físico , Proteínas del Choque Térmico HSP72/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Frecuencia Cardíaca , Humanos , Leucocitos/metabolismo , Curva ROC , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sudor/metabolismo , Temperatura , Transcripción Genética , Adulto Joven
5.
J Appl Physiol (1985) ; 119(8): 889-99, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26205540

RESUMEN

Heat acclimation (HA) attenuates physiological strain in hot conditions via phenotypic and cellular adaptation. The aim of this study was to determine whether HA reduced physiological strain, and heat shock protein (HSP) 72 and HSP90α mRNA responses in acute normobaric hypoxia. Sixteen male participants completed ten 90-min sessions of isothermic HA (40°C/40% relative humidity) or exercise training [control (CON); 20°C/40% relative humidity]. HA or CON were preceded (HYP1) and proceeded (HYP2) by a 30-min normobaric hypoxic exposure [inspired O2 fraction = 0.12; 10-min rest, 10-min cycling at 40% peak O2 uptake (V̇O2 peak), 10-min cycling at 65% V̇O2 peak]. HA induced greater rectal temperatures, sweat rate, and heart rates (HR) than CON during the training sessions. HA, but not CON, reduced resting rectal temperatures and resting HR and increased sweat rate and plasma volume. Hemoglobin mass did not change following HA nor CON. HSP72 and HSP90α mRNA increased in response to each HA session, but did not change with CON. HR during HYP2 was lower and O2 saturation higher at 65% V̇O2 peak following HA, but not CON. O2 uptake/HR was greater at rest and 65% V̇O2 peak in HYP2 following HA, but was unchanged after CON. At rest, the respiratory exchange ratio was reduced during HYP2 following HA, but not CON. The increase in HSP72 mRNA during HYP1 did not occur in HYP2 following HA. In CON, HSP72 mRNA expression was unchanged during HYP1 and HYP2. In HA and CON, increases in HSP90α mRNA during HYP1 were maintained in HYP2. HA reduces physiological strain, and the transcription of HSP72, but not HSP90α mRNA in acute normobaric hypoxia.


Asunto(s)
Aclimatación/fisiología , Proteínas del Choque Térmico HSP72/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Calor , Hipoxia/metabolismo , Adulto , Ciclismo/fisiología , Ejercicio Físico/fisiología , Proteínas del Choque Térmico HSP72/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos , Hipoxia/genética , Masculino , Consumo de Oxígeno/fisiología , ARN Mensajero , Adulto Joven
6.
J Appl Physiol (1985) ; 118(8): 996-1005, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25722377

RESUMEN

Stressors within humans and other species activate Hsp72 and Hsp90α mRNA transcription, although it is unclear which environmental temperature or treadmill gradient induces the largest increase. To determine the optimal stressor for priming the Hsp system, physically active but not heat-acclimated participants (19.8 ± 1.9 and 20.9 ± 3.6 yr) exercised at lactate threshold in either temperate (20°C, 50% relative humidity; RH) or hot (30°C, 50% RH) environmental conditions. Within each condition, participants completed a flat running (temperate flat or hot flat) and a downhill running (temperate downhill or hot downhill) experimental trial in a randomized counterbalanced order separated by at least 7 days. Venous blood samples were taken immediately before (basal), immediately after exercise, and 3 and 24 h postexercise. RNA was extracted from leukocytes and RT-quantitative PCR conducted to determine Hsp72 and Hsp90α mRNA relative expression. Leukocyte Hsp72 mRNA was increased immediately after exercise following downhill running (1.9 ± 0.9-fold) compared with flat running (1.3 ± 0.4-fold; P = 0.001) and in hot (1.9 ± 0.6-fold) compared with temperate conditions (1.1 ± 0.5-fold; P = 0.003). Leukocyte Hsp90α mRNA increased immediately after exercise following downhill running (1.4 ± 0.8-fold) compared with flat running (0.9 ± 0.6-fold; P = 0.002) and in hot (1.6 ± 1.0-fold) compared with temperate conditions (0.9 ± 0.6-fold; P = 0.003). Downhill running and exercise in hot conditions induced the largest stimuli for leukocyte Hsp72 and Hsp90α mRNA increases.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Calor , Leucocitos/metabolismo , Carrera/fisiología , Adaptación Fisiológica , Adolescente , Adulto , Voluntarios Sanos , Humanos , Masculino , Mialgia , Distribución Aleatoria , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA