Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39138745

RESUMEN

The issue of left against medical advice (LAMA) patients is common in today's emergency departments (EDs). This issue represents a medico-legal risk and may result in potential readmission, mortality, or revenue loss. Thus, understanding the factors that cause patients to "leave against medical advice" is vital to mitigate and potentially eliminate these adverse outcomes. This paper proposes a framework for studying the factors that affect LAMA in EDs. The framework integrates machine learning, metaheuristic optimization, and model interpretation techniques. Metaheuristic optimization is used for hyperparameter optimization-one of the main challenges of machine learning model development. Adaptive tabu simulated annealing (ATSA) metaheuristic algorithm is utilized for optimizing the parameters of extreme gradient boosting (XGB). The optimized XGB models are used to predict the LAMA outcomes for patients under treatment in ED. The designed algorithms are trained and tested using four data groups which are created using feature selection. The model with the best predictive performance is then interpreted using the SHaply Additive exPlanations (SHAP) method. The results show that best model has an area under the curve (AUC) and sensitivity of 76% and 82%, respectively. The best model was explained using SHAP method.

2.
Inf Syst Front ; 25(3): 1261-1276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35669335

RESUMEN

Approximately one billion individuals suffer from mental health disorders, such as depression, bipolar disorder, schizophrenia, and anxiety. Mental health professionals use various assessment tools to detect and diagnose these disorders. However, these tools are complex, contain an excessive number of questions, and require a significant amount of time to administer, leading to low participation and completion rates. Additionally, the results obtained from these tools must be analyzed and interpreted manually by mental health professionals, which may yield inaccurate diagnoses. To this extent, this research utilizes advanced analytics and artificial intelligence to develop a decision support system (DSS) that can efficiently detect and diagnose various mental disorders. As part of the DSS development process, the Network Pattern Recognition (NEPAR) algorithm is first utilized to build the assessment tool and identify the questions that participants need to answer. Then, various machine learning models are trained using participants' answers to these questions and other historical data as inputs to predict the existence and the type of their mental disorder. The results show that the proposed DSS can automatically diagnose mental disorders using only 28 questions without any human input, to an accuracy level of 89%. Furthermore, the proposed mental disorder diagnostic tool has significantly fewer questions than its counterparts; hence, it provides higher participation and completion rates. Therefore, mental health professionals can use this proposed DSS and its accompanying assessment tool for improved clinical decision-making and diagnostic accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA