Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33450205

RESUMEN

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Asunto(s)
Antivirales/farmacología , Inmunidad/efectos de los fármacos , Empalmosomas/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Femenino , Amplificación de Genes/efectos de los fármacos , Humanos , Intrones/genética , Ratones , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-myc/metabolismo , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , ARN Bicatenario/metabolismo , Transducción de Señal/efectos de los fármacos , Empalmosomas/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética
2.
Mol Cell ; 81(15): 3048-3064.e9, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216543

RESUMEN

RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression, and aberrant RBP-RNA interactions can promote cancer progression. Here, we interrogate the function of RBPs in cancer using pooled CRISPR-Cas9 screening and identify 57 RBP candidates with distinct roles in supporting MYC-driven oncogenic pathways. We find that disrupting YTHDF2-dependent mRNA degradation triggers apoptosis in triple-negative breast cancer (TNBC) cells and tumors. eCLIP and m6A sequencing reveal that YTHDF2 interacts with mRNAs encoding proteins in the MAPK pathway that, when stabilized, induce epithelial-to-mesenchymal transition and increase global translation rates. scRibo-STAMP profiling of translating mRNAs reveals unique alterations in the translatome of single cells within YTHDF2-depleted solid tumors, which selectively contribute to endoplasmic reticulum stress-induced apoptosis in TNBC cells. Thus, our work highlights the therapeutic potential of RBPs by uncovering a critical role for YTHDF2 in counteracting the global increase of mRNA synthesis in MYC-driven breast cancers.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Unión al ARN/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Muerte Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Genes myc , Humanos , Ratones Desnudos , Ratones Transgénicos , Biosíntesis de Proteínas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Nature ; 525(7569): 384-8, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26331541

RESUMEN

MYC (also known as c-MYC) overexpression or hyperactivation is one of the most common drivers of human cancer. Despite intensive study, the MYC oncogene remains recalcitrant to therapeutic inhibition. MYC is a transcription factor, and many of its pro-tumorigenic functions have been attributed to its ability to regulate gene expression programs. Notably, oncogenic MYC activation has also been shown to increase total RNA and protein production in many tissue and disease contexts. While such increases in RNA and protein production may endow cancer cells with pro-tumour hallmarks, this increase in synthesis may also generate new or heightened burden on MYC-driven cancer cells to process these macromolecules properly. Here we discover that the spliceosome is a new target of oncogenic stress in MYC-driven cancers. We identify BUD31 as a MYC-synthetic lethal gene in human mammary epithelial cells, and demonstrate that BUD31 is a component of the core spliceosome required for its assembly and catalytic activity. Core spliceosomal factors (such as SF3B1 and U2AF1) associated with BUD31 are also required to tolerate oncogenic MYC. Notably, MYC hyperactivation induces an increase in total precursor messenger RNA synthesis, suggesting an increased burden on the core spliceosome to process pre-mRNA. In contrast to normal cells, partial inhibition of the spliceosome in MYC-hyperactivated cells leads to global intron retention, widespread defects in pre-mRNA maturation, and deregulation of many essential cell processes. Notably, genetic or pharmacological inhibition of the spliceosome in vivo impairs survival, tumorigenicity and metastatic proclivity of MYC-dependent breast cancers. Collectively, these data suggest that oncogenic MYC confers a collateral stress on splicing, and that components of the spliceosome may be therapeutic entry points for aggressive MYC-driven cancers.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Genes myc/genética , Empalmosomas/efectos de los fármacos , Empalmosomas/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Intrones/genética , Ratones , Ratones Desnudos , Metástasis de la Neoplasia/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Precursores del ARN/biosíntesis , Precursores del ARN/genética , Empalme del ARN/efectos de los fármacos , Factores de Empalme de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Ribonucleoproteínas/metabolismo , Factor de Empalme U2AF , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nat Cell Biol ; 25(4): 528-539, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37024683

RESUMEN

Upon stimulation by extrinsic stimuli, stem cells initiate a programme that enables differentiation or self-renewal. Disruption of the stem state exit has catastrophic consequences for embryogenesis and can lead to cancer. While some elements of this stem state switch are known, major regulatory mechanisms remain unclear. Here we show that this switch involves a global increase in splicing efficiency coordinated by DNA methyltransferase 3α (DNMT3A), an enzyme typically involved in DNA methylation. Proper activation of murine and human embryonic and haematopoietic stem cells depends on messenger RNA processing, influenced by DNMT3A in response to stimuli. DNMT3A coordinates splicing through recruitment of the core spliceosome protein SF3B1 to RNA polymerase and mRNA. Importantly, the DNA methylation function of DNMT3A is not required and loss of DNMT3A leads to impaired splicing during stem cell turnover. Finally, we identify the spliceosome as a potential therapeutic target in DNMT3A-mutated leukaemias. Together, our results reveal a modality through which DNMT3A and the spliceosome govern exit from the stem state towards differentiation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Animales , Humanos , Ratones , Diferenciación Celular/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Células Madre Hematopoyéticas/metabolismo
6.
iScience ; 26(7): 107059, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37360684

RESUMEN

To address the limitation associated with degron based systems, we have developed iTAG, a synthetic tag based on IMiDs/CELMoDs mechanism of action that improves and addresses the limitations of both PROTAC and previous IMiDs/CeLMoDs based tags. Using structural and sequence analysis, we systematically explored native and chimeric degron containing domains (DCDs) and evaluated their ability to induce degradation. We identified the optimal chimeric iTAG(DCD23 60aa) that elicits robust degradation of targets across cell types and subcellular localizations without exhibiting the well documented "hook effect" of PROTAC-based systems. We showed that iTAG can also induce target degradation by murine CRBN and enabled the exploration of natural neo-substrates that can be degraded by murine CRBN. Hence, the iTAG system constitutes a versatile tool to degrade targets across the human and murine proteome.

7.
Oncogene ; 39(18): 3726-3737, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32157212

RESUMEN

Lineage selective transcription factors (TFs) are important regulators of tumorigenesis, but their biological functions are often context dependent with undefined epigenetic mechanisms of action. In this study, we uncover a conditional role for the endodermal and pulmonary specifying TF GATA6 in lung adenocarcinoma (LUAD) progression. Impairing Gata6 in genetically engineered mouse models reduces the proliferation and increases the differentiation of Kras mutant LUAD tumors. These effects are influenced by the epithelial cell type that is targeted for transformation and genetic context of Kras-mediated tumor initiation. In LUAD cells derived from surfactant protein C expressing progenitors, we identify multiple genomic loci that are bound by GATA6. Moreover, suppression of Gata6 in these cells significantly alters chromatin accessibility, particularly at distal enhancer elements. Analogous to its paradoxical activity in lung development, GATA6 expression fluctuates during different stages of LUAD progression and can epigenetically control diverse transcriptional programs associated with bone morphogenetic protein signaling, alveolar specification, and tumor suppression. These findings reveal how GATA6 can modulate the chromatin landscape of lung cancer cells to control their proliferation and divergent lineage dependencies during tumor progression.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Factor de Transcripción GATA6/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma del Pulmón/patología , Animales , Carcinogénesis/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular/genética , Cromatina/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/patología , Ratones
8.
Nat Cell Biol ; 22(2): 225-234, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32029897

RESUMEN

Energy stress depletes ATP and induces cell death. Here we identify an unexpected inhibitory role of energy stress on ferroptosis, a form of regulated cell death induced by iron-dependent lipid peroxidation. We found that ferroptotic cell death and lipid peroxidation can be inhibited by treatments that induce or mimic energy stress. Inactivation of AMP-activated protein kinase (AMPK), a sensor of cellular energy status, largely abolishes the protective effects of energy stress on ferroptosis in vitro and on ferroptosis-associated renal ischaemia-reperfusion injury in vivo. Cancer cells with high basal AMPK activation are resistant to ferroptosis and AMPK inactivation sensitizes these cells to ferroptosis. Functional and lipidomic analyses further link AMPK regulation of ferroptosis to AMPK-mediated phosphorylation of acetyl-CoA carboxylase and polyunsaturated fatty acid biosynthesis. Our study demonstrates that energy stress inhibits ferroptosis partly through AMPK and reveals an unexpected coupling between ferroptosis and AMPK-mediated energy-stress signalling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Acetil-CoA Carboxilasa/genética , Ferroptosis/genética , Riñón/enzimología , Peroxidación de Lípido/genética , Daño por Reperfusión/genética , Células A549 , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Animales , Línea Celular Tumoral , Ciclohexilaminas/farmacología , Embrión de Mamíferos , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Ácidos Grasos Insaturados/biosíntesis , Ferroptosis/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glucosa/deficiencia , Glucosa/farmacología , Humanos , Hierro/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Peroxidación de Lípido/efectos de los fármacos , Células MCF-7 , Ratones , Ratones Transgénicos , Fenilendiaminas/farmacología , Fosforilación , Piperazinas/antagonistas & inhibidores , Piperazinas/farmacología , Cultivo Primario de Células , Pirazoles/farmacología , Pirimidinas/farmacología , Daño por Reperfusión/enzimología , Daño por Reperfusión/patología , Transducción de Señal , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
10.
Nat Med ; 24(4): 505-511, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29578538

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer diagnosed in more than 200,000 women each year and is recalcitrant to targeted therapies. Although TNBCs harbor multiple hyperactive receptor tyrosine kinases (RTKs), RTK inhibitors have been largely ineffective in TNBC patients thus far. We developed a broadly effective therapeutic strategy for TNBC that is based on combined inhibition of receptors that share the negative regulator PTPN12. Previously, we and others identified the tyrosine phosphatase PTPN12 as a tumor suppressor that is frequently inactivated in TNBC. PTPN12 restrains several RTKs, suggesting that PTPN12 deficiency leads to aberrant activation of multiple RTKs and a co-dependency on these receptors. This in turn leads to the therapeutic hypothesis that PTPN12-deficient TNBCs may be responsive to combined RTK inhibition. However, the repertoire of RTKs that are restrained by PTPN12 in human cells has not been systematically explored. By methodically identifying the suite of RTK substrates (MET, PDGFRß, EGFR, and others) inhibited by PTPN12, we rationalized a combination RTK-inhibitor therapy that induced potent tumor regression across heterogeneous models of TNBC. Orthogonal approaches revealed that PTPN12 was recruited to and inhibited these receptors after ligand stimulation, thereby serving as a feedback mechanism to limit receptor signaling. Cancer-associated mutation of PTPN12 or reduced PTPN12 protein levels diminished this feedback mechanism, leading to aberrant activity of these receptors. Restoring PTPN12 protein levels restrained signaling from RTKs, including PDGFRß and MET, and impaired TNBC survival. In contrast with single agents, combined inhibitors targeting the PDGFRß and MET receptors induced the apoptosis in TNBC cells in vitro and in vivo. This therapeutic strategy resulted in tumor regressions in chemo-refractory patient-derived TNBC models. Notably, response correlated with PTPN12 deficiency, suggesting that impaired receptor feedback may establish a combined addiction to these proto-oncogenic receptors. Taken together, our data provide a rationale for combining RTK inhibitors in TNBC and other malignancies that lack receptor-activating mutations.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Supervivencia Celular , Crizotinib/farmacología , Crizotinib/uso terapéutico , Femenino , Humanos , Ratones Desnudos , Mutación/genética , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 12/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Sunitinib/farmacología , Sunitinib/uso terapéutico , Neoplasias de la Mama Triple Negativas/enzimología , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cell Rep ; 9(4): 1318-32, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25453754

RESUMEN

Defining the molecular networks that drive breast cancer has led to therapeutic interventions and improved patient survival. However, the aggressive triple-negative breast cancer subtype (TNBC) remains recalcitrant to targeted therapies because its molecular etiology is poorly defined. In this study, we used a forward genetic screen to discover an oncogenic network driving human TNBC. SCYL1, TEX14, and PLK1 ("STP axis") cooperatively trigger degradation of the REST tumor suppressor protein, a frequent event in human TNBC. The STP axis induces REST degradation by phosphorylating a conserved REST phospho-degron and bridging REST interaction with the ubiquitin-ligase ßTRCP. Inhibition of the STP axis leads to increased REST protein levels and impairs TNBC transformation, tumor progression, and metastasis. Expression of the STP axis correlates with low REST protein levels in human TNBCs and poor clinical outcome for TNBC patients. Our findings demonstrate that the STP-REST axis is a molecular driver of human TNBC.


Asunto(s)
Proteínas Represoras/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Carcinogénesis/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Femenino , Amplificación de Genes , Humanos , Ratones , Metástasis de la Neoplasia , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/genética , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA