Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microcirculation ; 29(6-7): e12770, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35611457

RESUMEN

OBJECTIVE: Monitoring microcirculation and visualizing microvasculature are critical for providing diagnosis to medical professionals and guiding clinical interventions. Ultrasound provides a medium for monitoring and visualization; however, there are challenges due to the complex microscale geometry of the vasculature and difficulties associated with quantifying perfusion. Here, we studied established and state-of-the-art ultrasonic modalities (using six probes) to compare their detection of slow flow in small microvasculature. METHODS: Five ultrasonic modalities were studied: grayscale, color Doppler, power Doppler, superb microvascular imaging (SMI), and microflow imaging (MFI), using six linear probes across two ultrasound scanners. Image readability was blindly scored by radiologists and quantified for evaluation. Vasculature visualization was investigated both in vitro (resolution and flow characterization) and in vivo (fingertip microvasculature detection). RESULTS: Superb Microvascular Imaging (SMI) and Micro Flow Imaging (MFI) modalities provided superior images when compared with conventional ultrasound imaging modalities both in vitro and in vivo. The choice of probe played a significant difference in detectability. The slowest flow detected (in the lab) was 0.1885 ml/s and small microvasculature of the fingertip were visualized. CONCLUSIONS: Our data demonstrated that SMI and MFI used with vascular probes operating at higher frequencies provided resolutions acceptable for microvasculature visualization, paving the path for future development of ultrasound devices for microcirculation monitoring.


Asunto(s)
Microvasos , Ultrasonografía Doppler , Microcirculación , Ultrasonografía/métodos , Microvasos/diagnóstico por imagen , Ultrasonografía Doppler/métodos
2.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456971

RESUMEN

The blood-brain barrier (BBB) constitutes a microvascular network responsible for excluding most drugs from the brain. Treatment of brain tumors is limited by the impermeability of the BBB and, consequently, survival outcomes for malignant brain tumors remain poor. Nanoparticles (NPs) represent a potential solution to improve drug transport to brain tumors, given their small size and capacity to target tumor cells. Here, we review the unique physical and chemical properties of NPs that aid in BBB transport and discuss mechanisms of NP transport across the BBB, including paracellular transport, carrier-mediated transport, and adsorptive- and receptor-mediated transcytosis. The major types of NPs investigated for treatment of brain tumors are detailed, including polymeric NPs, liposomes, solid lipid NPs, dendrimers, metals, quantum dots, and nanogels. In addition to their role in drug delivery, NPs can be used as imaging contrast agents and can be conjugated with imaging probes to assist in visualizing tumors, demarcating lesion boundaries and margins, and monitoring drug delivery and treatment response. Multifunctional NPs can be designed that are capable of targeting tumors for both imaging and therapeutic purposes. Finally, limitations of NPs for brain tumor treatment are discussed.


Asunto(s)
Neoplasias Encefálicas , Nanopartículas , Barrera Hematoencefálica , Encéfalo , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Humanos , Nanopartículas/química , Tecnología
3.
J Neurooncol ; 135(1): 47-56, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28735458

RESUMEN

Neurofibromatosis type 2 (NF2), a neurogenetic condition manifest by peripheral nerve sheath tumors (PNST) throughout the neuroaxis for which there are no approved therapies. In vitro and in vivo studies presented here examine agents targeting signaling pathways, angiogenesis, and DNA repair mechanisms. In vitro dose response assays demonstrated potent activity of lapatinib and nilotinib against the mouse schwannoma SC4 (Nf2 -/-) cell line. We then examined the efficacy of everolimus, nilotinib, lapatinib, bevacizumab and radiation (RT) as mono- and combination therapies in flank and sciatic nerve in vivo NF2-PNST models. Data were analyzed using generalized linear models, two sample T-tests and paired T-tests, and linear regression models. SC4(Nf2 -/-) cells implanted in the flank or sciatic nerve showed similar rates of growth (p = 0.9748). Lapatinib, nilotinib and RT significantly reduced tumor growth rate versus controls in the in vivo flank model (p = 0.0025, 0.0062, and 0.009, respectively) whereas bevacizumab and everolimus did not. The best performers were tested in the in vivo sciatic nerve model of NF2 associated PNST, where chemoradiation outperformed nilotinib or lapatinib as single agents (nilotinib vs. nilotinib + RT, p = 0.0001; lapatinib versus lapatinib + RT, p < 0.0001) with no observed toxicity. There was no re-growth of tumors even 14 days after treatment was stopped. The combination of either lapatinib or nilotinib with RT resulted in greater delays in tumor growth rate than any modality alone. This data suggest that concurrent low dose RT and targeted therapy may have a role in addressing progressive PNST in patients with NF2.


Asunto(s)
Antineoplásicos/farmacología , Neurilemoma/terapia , Neurofibromatosis 2/terapia , Neoplasias del Sistema Nervioso Periférico/terapia , Pirimidinas/farmacología , Quinazolinas/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Quimioradioterapia , Everolimus/farmacología , Lapatinib , Ratones , Ratones Desnudos , Ratones Transgénicos , Modelos Estadísticos , Trasplante de Neoplasias , Neurilemoma/patología , Neurofibromatosis 2/patología , Neoplasias del Sistema Nervioso Periférico/patología , Nervio Ciático , Factores de Tiempo
4.
Trans Am Clin Climatol Assoc ; 128: 55-74, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28790487

RESUMEN

The Johns Hopkins Hunterian Neurosurgical Laboratory at the Johns Hopkins University School of Medicine was created in 1904 by Harvey Cushing and William Halsted and has had a long history of fostering surgical training, encouraging basis science research, and facilitating translational application. Over the past 30 years, the laboratory has addressed the paucity of brain tumor therapies. Pre-clinical work from the laboratory led to the development of carmustine wafers with initial US Food and Drug Administration (FDA) approval in 1996. Combining carmustine wafers, radiation, and temozolomide led to a significant increase in the median survival of patients with glioblastoma. The laboratory has also developed microchips and immunotherapy to further extend survival in this heretofore underserved population. These achievements were made possible by the dedication, commitment, and creativity of more than 300 trainees of the Hunterian Neurosurgical Laboratory. The laboratory demonstrates the beneficial influence of research experience as well its substantial impact on the field of biomedical research.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/cirugía , Educación Médica/historia , Neurocirugia/historia , Facultades de Medicina/historia , Antineoplásicos/administración & dosificación , Antineoplásicos/historia , Antineoplásicos/uso terapéutico , Baltimore , Investigación Biomédica/historia , Implantes de Medicamentos/historia , Implantes de Medicamentos/uso terapéutico , Historia del Siglo XX , Humanos , Mujeres/historia
5.
Neuroimage ; 113: 397-406, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25791782

RESUMEN

The confluence of technological advances in optics, miniaturized electronic components and the availability of ever increasing and affordable computational power have ushered in a new era in functional neuroimaging, namely, an era in which neuroimaging of cortical function in unrestrained and unanesthetized rodents has become a reality. Traditional optical neuroimaging required animals to be anesthetized and restrained. This greatly limited the kinds of experiments that could be performed in vivo. Now one can assess blood flow and oxygenation changes resulting from functional activity and image functional response in disease models such as stroke and seizure, and even conduct long-term imaging of tumor physiology, all without the confounding effects of anesthetics or animal restraints. These advances are shedding new light on mammalian brain organization and function, and helping to elucidate loss of this organization or 'dysfunction' in a wide array of central nervous system disease models. In this review, we highlight recent advances in the fabrication, characterization and application of miniaturized head-mounted optical neuroimaging systems pioneered by innovative investigators from a wide array of disciplines. We broadly classify these systems into those based on exogenous contrast agents, such as single- and two-photon microscopy systems; and those based on endogenous contrast mechanisms, such as multispectral or laser speckle contrast imaging systems. Finally, we conclude with a discussion of the strengths and weaknesses of these approaches along with a perspective on the future of this exciting new frontier in neuroimaging.


Asunto(s)
Neuroimagen Funcional/instrumentación , Neuroimagen Funcional/métodos , Miniaturización , Animales , Encéfalo/anatomía & histología , Encéfalo/patología , Medios de Contraste , Diseño de Equipo , Microscopía , Roedores
6.
Stroke ; 45(4): 1123-1130, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24627118

RESUMEN

BACKGROUND AND PURPOSE: Extravascular optical coherence tomography (OCT), as a noninvasive imaging methodology with micrometer resolution, was evaluated in a murine model of carotid atherosclerosis by way of assessing the efficacy of pravastatin therapy. METHODS: An OCT device was engineered for extravascular plaque imaging. Wild-type mice and apolipoprotein E-deficient (ApoE(-/-)) mice were randomized to 3 treatment groups: (1) wild-type on a diet of standard rodent chow (n=13); (2) ApoE(-/-) on a high-fat, atherosclerotic diet (HFD; n=13); and (3) ApoE(-/-) on a HFD given daily pravastatin (n=13). Mice were anesthetized and the left common carotid was surgically exposed. Three-dimensional (3D; 2 spatial dimensions+time) and 4D (3 spatial dimensions+time) OCT images of the vessel lumen patency were evaluated. After perfusion, in situ OCT imaging was performed for statistical comparison with the in vivo results and final histology. RESULTS: Intraoperative OCT imaging positively identified carotid plaque in 100% of ApoE(-/-) mice on HFD. ApoE(-/-) mice on HFD had a significantly decreased lumen patency when compared with that in wild-type mice (P<0.001). Pravastatin therapy was found to increase lumen patency significantly in ApoE(-/-) mice on HFD (P<0.01; compared with ApoE(-/-) on HFD). The findings were confirmed with OCT imaging after perfusion and histology. CONCLUSIONS: OCT imaging offers the potential for real-time, detailed vessel lumen evaluation, potentially improving surgical accuracy and outcomes during cerebrovascular neurosurgical procedures. Pravastatin significantly increases vessel lumen patency in the ApoE(-/-) mouse on HFD.


Asunto(s)
Enfermedades de las Arterias Carótidas/tratamiento farmacológico , Enfermedades de las Arterias Carótidas/patología , Monitoreo de Drogas/métodos , Pravastatina/farmacología , Tomografía de Coherencia Óptica/métodos , Animales , Apolipoproteínas E/genética , Estenosis Carotídea/tratamiento farmacológico , Estenosis Carotídea/patología , Modelos Animales de Enfermedad , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Imagenología Tridimensional/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria
7.
J Neurooncol ; 111(3): 229-36, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23224713

RESUMEN

OncoGel™ incorporates paclitaxel, a mitotic inhibitor, into ReGel™, a thermosensitive gel depot system to provide local delivery, enhance efficacy and limit systemic toxicity. In previous studies the alkylating agent temozolomide (TMZ) incorporated into a polymer, pCPP:SA, also for local delivery, and OncoGel were individually shown to increase efficacy in a rat glioma model. We investigated the effects of OncoGel with oral TMZ or locally delivered TMZ polymer, with and without radiotherapy (XRT) in rats with intracranial gliosarcoma. Eighty-nine animals were intracranially implanted with a 9L gliosarcoma tumor and divided into 12 groups that received various combinations of 4 treatment options; OncoGel 6.3 mg/ml (Day 0), 20 Gy XRT (Day 5), 50 % TMZ-pCPP:SA (Day 5), or oral TMZ (50 mg/kg, qd, Days 5-9). Animals were followed for survival for 120 days. Median survival for untreated controls, XRT alone or oral TMZ alone was 15, 19 and 28 days, respectively. OncoGel 6.3 or TMZ polymer alone extended median survival to 33 and 35 days, respectively (p = 0.0005; p < 0.0001, vs. untreated controls) with 50 % living greater than 120 days (LTS) in both groups. Oral TMZ/XRT extended median survival to 36 days (p = 0.0002), with no LTS. The group that received OncoGel and Oral TMZ did not reach median survival with 57 % LTS (p = 0.0002). All other combination groups [OncoGel/XRT], [TMZ polymer/XRT], [OncoGel/TMZ polymer], [OncoGel/TMZ polymer/XRT], and [OncoGel/oral TMZ/XRT] yielded greater than 50 % LTS (p < 0.0001 for each combination as compared to controls), therefore median survival was not reached. OncoGel/TMZ polymer and OncoGel/oral TMZ/XRT had 100 % LTS (p < 0.0001 and p = 0.0001 vs. oral TMZ/XRT, respectively). These results indicate that OncoGel given locally with oral or locally delivered TMZ and/or XRT significantly increased the number of LTS and improved median survival compared to oral TMZ and XRT given alone or in combination in a rodent intracranial gliosarcoma model.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Dacarbazina/análogos & derivados , Glioma/tratamiento farmacológico , Glioma/radioterapia , Paclitaxel/uso terapéutico , Análisis de Varianza , Animales , Dacarbazina/uso terapéutico , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Quimioterapia Combinada , Femenino , Geles/uso terapéutico , Humanos , Trasplante de Neoplasias , Ratas , Ratas Endogámicas F344 , Análisis de Supervivencia , Temozolomida
8.
Vet Sci ; 10(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37368758

RESUMEN

Long-acting injectable (LAI) opioid formulations mitigate the harm profiles and management challenges associated with providing effective analgesia for animals. A single dose of a long-acting opioid analgesic can provide up to 72 h of clinically relevant pain management. Yet, few of these new drugs have been translated to products for veterinary clinics. Regulatory pathways allow accelerated drug approvals for generic and biosimilar drugs. These pathways depend on rigorous evidence for drug safety and pharmacokinetic evidence demonstrating bioequivalence between the new and the legacy drug. This report reviews the animal PK data associated with lipid and polymer-bound buprenorphine LAI formulations. Buprenorphine is a widely used veterinary opioid analgesic. Because of its safety profile and regulatory status, buprenorphine is more accessible than morphine, methadone, and fentanyl. This review of PK studies coupled with the well-established safety profile of buprenorphine suggests that the accelerated approval pathways may be available for this new family of LAI veterinary pharmaceuticals.

9.
Cancers (Basel) ; 15(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831418

RESUMEN

Novel therapeutic and diagnostic methods are sorely needed for gliomas, which contribute yearly to hundreds of thousands of cancer deaths worldwide. Despite the outpouring of research efforts and funding aimed at improving clinical outcomes for patients with glioma, the prognosis for high-grade glioma, and especially glioblastoma, remains dire. One of the greatest obstacles to improving treatment efficacy and destroying cancer cells is the safe delivery of chemotherapeutic drugs and biologics to the tumor site at a high enough dose to be effective. Over the past few decades, a burst of research has leveraged nanotechnology to overcome this obstacle. There has been a renewed interest in adapting previously understudied dendrimer nanocarriers for this task. Dendrimers are small, highly modifiable, branched structures featuring binding sites for a variety of drugs and ligands. Recent studies have demonstrated the potential for dendrimers and dendrimer conjugates to effectively shuttle therapeutic cargo to the correct tumor location, permeate the tumor, and promote apoptosis of tumor cells while minimizing systemic toxicity and damage to surrounding healthy brain tissue. This review provides a primer on the properties of dendrimers; outlines the mechanisms by which they can target delivery of substances to the site of brain pathology; and delves into current trends in the application of dendrimers to drug and gene delivery, and diagnostic imaging, in glioma. Finally, future directions for translating these in vitro and in vivo findings to the clinic are discussed.

10.
J Neurooncol ; 106(1): 81-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21789699

RESUMEN

UNLABELLED: Leptomeningeal carcinomatosis (LC) is a devastating complication of cancer. Intrathecal administration of cytotoxic chemotherapy adds little to survival which is measured in weeks. The potential toxicities and efficacy of intrathecally administered anti-angiogenic agents in this setting have not previously been explored. A well-characterized animal model was used to evaluate the neurotoxicity of intraventricularly administered bevacizumab (BCM). Thirty-three New Zealand White Rabbits were studied. Subcutaneous reservoirs and ventricular catheters (SRVC) were placed in eight rabbits, which were randomized to receive weekly intraventricular saline with or without BCM for four weeks. These rabbits were euthanized on day 36 and the brains were examined by a blinded neuropathologist. Twenty-five additional rabbits underwent cisternal injection of VX2 carcinoma cells with or without a single dose of BCM and were followed for survival. No clinical manifestations of neurotoxicity were noted in rabbits treated with intraventricular BCM. Similarly, no evidence of BCM neurotoxicity was identified in autopsied animals. The median survival of evaluable rabbits with LC treated with intraventricular saline (N = 13) was 15 days compared to 18 days for the animals receiving VX2 and one dose of BCM (N = 12). CONCLUSION: Intraventricular BCM can be administered to rabbits without clinical or pathologic neurotoxicity. Survival following one dose of BCM in rabbits with LC should be cautiously interpreted given uncertainties regarding the dose, schedule, and limited expected benefit of this non-rabbit antibody. This neurotoxicity study provides safety data to allow phase I/II studies in humans with treatment refractory LC.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/toxicidad , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/toxicidad , Carcinomatosis Meníngea/tratamiento farmacológico , Anestesia , Animales , Bevacizumab , Línea Celular Tumoral , Cisterna Magna , Inyecciones , Inyecciones Intraventriculares , Inyecciones Espinales , Estimación de Kaplan-Meier , Masculino , Carcinomatosis Meníngea/patología , Síndromes de Neurotoxicidad/psicología , Conejos , Sobrevida , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Pharmaceuticals (Basel) ; 15(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35631452

RESUMEN

The deregulation of energetic and cellular metabolism is a signature of cancer cells. Thus, drugs targeting cancer cell metabolism may have promising therapeutic potential. Previous reports demonstrate that the widely used normoglycemic agent, metformin, can decrease the risk of cancer in type 2 diabetics and inhibit cell growth in various cancers, including pancreatic, colon, prostate, ovarian, and breast cancer. While metformin is a known adenosine monophosphate-activated protein kinase (AMPK) agonist and an inhibitor of the electron transport chain complex I, its mechanism of action in cancer cells as well as its effect on cancer metabolism is not clearly established. In this review, we will give an update on the role of metformin as an antitumoral agent and detail relevant evidence on the potential use and mechanisms of action of metformin in cancer. Analyzing antitumoral, signaling, and metabolic impacts of metformin on cancer cells may provide promising new therapeutic strategies in oncology.

12.
Polymers (Basel) ; 14(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35890738

RESUMEN

Translation of novel therapies for brain cancer into clinical practice is of the utmost importance as primary brain tumors are responsible for more than 200,000 deaths worldwide each year. While many research efforts have been aimed at improving survival rates over the years, prognosis for patients with glioblastoma and other primary brain tumors remains poor. Safely delivering chemotherapeutic drugs and other anti-cancer compounds across the blood-brain barrier and directly to tumor cells is perhaps the greatest challenge in treating brain cancer. Polymeric nanoparticles (NPs) are powerful, highly tunable carrier systems that may be able to overcome those obstacles. Several studies have shown appropriately-constructed polymeric NPs cross the blood-brain barrier, increase drug bioavailability, reduce systemic toxicity, and selectively target central nervous system cancer cells. While no studies relating to their use in treating brain cancer are in clinical trials, there is mounting preclinical evidence that polymeric NPs could be beneficial for brain tumor therapy. This review includes a variety of polymeric NPs and how their associated composition, surface modifications, and method of delivery impact their capacity to improve brain tumor therapy.

13.
Cancers (Basel) ; 14(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35954407

RESUMEN

Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. Although tumor regression is often observed initially after treatment, long-term recurrence or progression invariably occurs. Tumor growth, invasion, and recurrence is mediated by a unique population of glioblastoma stem cells (GSCs). Their high mutation rate and dysregulated transcriptional landscape augment their resistance to conventional chemotherapy and radiation therapy, explaining the poor outcomes observed in patients. Consequently, GSCs have emerged as targets of interest in new treatment paradigms. Here, we review the unique properties of GSCs, including their interactions with the hypoxic microenvironment that drives their proliferation. We discuss vital signaling pathways in GSCs that mediate stemness, self-renewal, proliferation, and invasion, including the Notch, epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt, sonic hedgehog, transforming growth factor beta, Wnt, signal transducer and activator of transcription 3, and inhibitors of differentiation pathways. We also review epigenomic changes in GSCs that influence their transcriptional state, including DNA methylation, histone methylation and acetylation, and miRNA expression. The constituent molecular components of the signaling pathways and epigenomic regulators represent potential sites for targeted therapy, and representative examples of inhibitory molecules and pharmaceuticals are discussed. Continued investigation into the molecular pathways of GSCs and candidate therapeutics is needed to discover new effective treatments for GBM and improve survival.

14.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36230843

RESUMEN

Glioblastoma (GBM) is an aggressive primary astrocytoma associated with short overall survival. Treatment for GBM primarily consists of maximal safe surgical resection, radiation therapy, and chemotherapy using temozolomide. Nonetheless, recurrence and tumor progression is the norm, driven by tumor stem cell activity and a high mutational burden. Focused ultrasound (FUS) has shown promising results in preclinical and clinical trials for treatment of GBM and has received regulatory approval for the treatment of other neoplasms. Here, we review the range of applications for FUS in the treatment of GBM, which depend on parameters, including frequency, power, pulse duration, and duty cycle. Low-intensity FUS can be used to transiently open the blood-brain barrier (BBB), which restricts diffusion of most macromolecules and therapeutic agents into the brain. Under guidance from magnetic resonance imaging, the BBB can be targeted in a precise location to permit diffusion of molecules only at the vicinity of the tumor, preventing side effects to healthy tissue. BBB opening can also be used to improve detection of cell-free tumor DNA with liquid biopsies, allowing non-invasive diagnosis and identification of molecular mutations. High-intensity FUS can cause tumor ablation via a hyperthermic effect. Additionally, FUS can stimulate immunological attack of tumor cells, can activate sonosensitizers to exert cytotoxic effects on tumor tissue, and can sensitize tumors to radiation therapy. Finally, another mechanism under investigation, known as histotripsy, produces tumor ablation via acoustic cavitation rather than thermal effects.

15.
J Neurosurg Pediatr ; 27(4): 482-488, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33545678

RESUMEN

OBJECTIVE: Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and group 3 (Myc driven) subtypes that are associated with the activity of eukaryotic initiation factor 4E (eIF4E), a critical mediator of translation, and enhancer of zeste homolog 2 (EZH2), a histone methyltransferase and master regulator of transcription. Recent drug repurposing efforts in multiple solid and hematologic malignancies have demonstrated that eIF4E and EZH2 are both pharmacologically inhibited by the FDA-approved antiviral drug ribavirin. Given the molecular overlap between medulloblastoma biology and known ribavirin activity, the authors investigated the preclinical efficacy of repurposing ribavirin as a targeted therapeutic in cell and animal models of medulloblastoma. METHODS: Multiple in vitro assays were performed using human ONS-76 (a primitive SHH model) and D425 (an aggressive group 3 model) cells. The impacts of ribavirin on cellular growth, death, migration, and invasion were quantified using proliferation and Cell Counting Kit-8 (CCK-8) assays, flow cytometry with annexin V (AnnV) staining, scratch wound assays, and Matrigel invasion chambers, respectively. Survival following daily ribavirin treatment (100 mg/kg) was assessed in vivo in immunodeficient mice intracranially implanted with D425 cells. RESULTS: Compared to controls, ribavirin treatment led to a significant reduction in medulloblastoma cell growth (ONS-76 proliferation assay, p = 0.0001; D425 CCK-8 assay, p < 0.0001) and a significant increase in cell death (flow cytometry for AnnV, ONS-76, p = 0.0010; D425, p = 0.0284). In ONS-76 cells, compared to controls, ribavirin significantly decreased cell migration and invasion (Matrigel invasion chamber assay, p = 0.0012). In vivo, ribavirin significantly extended survival in an aggressive group 3 medulloblastoma mouse model compared to vehicle-treated controls (p = 0.0004). CONCLUSIONS: The authors demonstrate that ribavirin, a clinically used drug known to inhibit eIF4E and EZH2, has significant antitumor effects in multiple preclinical models of medulloblastoma, including an aggressive group 3 animal model. Ribavirin may represent a promising targeted therapeutic in medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas/patología , Meduloblastoma/patología , Ribavirina/farmacología , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Factor 4E Eucariótico de Iniciación/efectos de los fármacos , Factor 4E Eucariótico de Iniciación/metabolismo , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Neurooncol ; 97(1): 1-10, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19693439

RESUMEN

Epirubicin (EPI) has strong cytotoxic activity that makes it a potential candidate for the treatment of malignant gliomas. To minimize toxicity and increase CNS penetration, EPI was incorporated into biodegradable polymers, and its in vitro and in vivo properties were studied. 9L, F98, C6, U251, and EMT-6 cell lines were treated with EPI in vitro and cell viability was measured. Toxicity of EPI/polycarboxyphenoxypropane-sebacic-acid (pCPP:SA) polymers was tested in vivo using F344 rats intracranially implanted with EPI polymers (2-50% by weight). The efficacy of 50% EPI:pCPP:SA polymers was determined in F344 rats intracranially challenged with 9L and treated either simultaneously or 5 days after tumor implantation. The efficacy of 50% EPI:pCCP:SA polymers administered on Day 5 in combination with oral TMZ was determined in rats intracranially challenged with 9L gliosarcoma. EPI was cytotoxic in all cell lines used in vitro. Intracranial implantation of the EPI polymers in rats generated neither local nor systemic toxicity. Animals receiving intracranial EPI on Day 5 had 50% long-term survivors (LTS), which was superior to local EPI delivered on Day 0 (LTS = 12.5%). Animals receiving intracranial EPI in combination with oral TMZ had 75% LTS whereas no other group had LTS. In those EPI treated animals that died before the controls there was evidence of intracranial hemorrhage. Systemic epirubicin resulted in high toxicity levels and early deaths in all the experiments. EPI polymers, alone or in combination with oral TMZ, is an effective therapeutic modality against experimental 9L gliosarcoma.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Epirrubicina/administración & dosificación , Glioma/tratamiento farmacológico , Polímeros/administración & dosificación , Animales , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Epirrubicina/farmacología , Femenino , Humanos , Polímeros/farmacología , Ratas , Ratas Endogámicas F344 , Sales de Tetrazolio , Tiazoles , Factores de Tiempo
17.
Mol Cancer Ther ; 8(2): 386-93, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19208828

RESUMEN

A commonly activated signaling cascade in many human malignancies, including glioblastoma multiforme, is the Akt pathway. This pathway can be activated via numerous upstream alterations including genomic amplification of epidermal growth factor receptor, PTEN deletion, or PIK3CA mutations. In this study, we screened phosphatidylinositol 3-kinase/Akt small-molecule inhibitors in an isogenic cell culture system with an activated Akt pathway secondary to a PIK3CA mutation. One small molecule, A-443654, showed the greatest selective inhibition of cells with the mutant phenotype. Based on these findings, this inhibitor was screened in vitro against a panel of glioblastoma multiforme cell lines. All cell lines tested were sensitive to A-443654 with a mean IC(50) of approximately 150 nmol/L. An analogue of A-443654, methylated at a region that blocks Akt binding, was on average 36-fold less active. Caspase assays and dual flow cytometric analysis showed an apoptotic mechanism of cell death. A-443654 was further tested in a rat intracranial model of glioblastoma multiforme. Animals treated intracranially with polymers containing A-443654 had significantly extended survival compared with control animals; animals survived 79% and 43% longer than controls when A-443654-containing polymers were implanted simultaneously or in a delayed fashion, respectively. This small molecule also inhibited glioblastoma multiforme stem-like cells with similar efficacy compared with traditionally cultured glioblastoma multiforme cell lines. These results suggest that local delivery of an Akt small-molecule inhibitor is effective against experimental intracranial glioma, with no observed resistance to glioblastoma multiforme cells grown in stem cell conditions.


Asunto(s)
Glioblastoma/enzimología , Glioblastoma/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I , Activación Enzimática/efectos de los fármacos , Femenino , Glioblastoma/tratamiento farmacológico , Humanos , Indazoles/farmacología , Indazoles/toxicidad , Indoles/farmacología , Indoles/toxicidad , Mutación/genética , Células Madre Neoplásicas/enzimología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Análisis de Supervivencia
18.
Sci Rep ; 10(1): 7614, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376983

RESUMEN

Cerebrovascular surgery can benefit from an intraoperative system that conducts continuous monitoring of cerebral blood flow (CBF). Such a system must be handy, non-invasive, and directly integrated into the surgical workflow. None of the currently available techniques, considered alone, meets all these criteria. Here, we introduce the SurgeON™ system: a newly developed non-invasive modular tool which transmits high-resolution Laser Speckle Contrast Imaging (LSCI) directly onto the eyepiece of the surgical microscope. In preclinical rodent and rabbit models, we show that this system enabled the detection of acute perfusion changes as well as the recording of temporal response patterns and degrees of flow changes in various microvascular settings, such as middle cerebral artery occlusion, femoral artery clipping, and complete or incomplete cortical vessel cautery. During these procedures, a real-time visualization of vasculature and CBF was available in high spatial resolution through the eyepiece as a direct overlay on the live morphological view of the surgical field. Upon comparison with indocyanine green angiography videoangiography (ICG-VA) imaging, also operable via SurgeON, we found that direct-LSCI can produce greater information than ICG-VA and that continuous display of data is advantageous for performing immediate LSCI-guided adjustments in real time.


Asunto(s)
Circulación Cerebrovascular , Rayos Láser , Imagen Molecular/instrumentación , Monitoreo Intraoperatorio/instrumentación , Animales , Ratas , Factores de Tiempo
19.
BMC Cancer ; 9: 417, 2009 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-19948061

RESUMEN

BACKGROUND: TEM1/endosialin is an emerging microvascular marker of tumor angiogenesis. We characterized the expression pattern of TEM1/endosialin in astrocytic and metastatic brain tumors and investigated its role as a therapeutic target in human endothelial cells and mouse xenograft models. METHODS: In situ hybridization (ISH), immunohistochemistry (IH) and immunofluorescence (IF) were used to localize TEM1/endosialin expression in grade II-IV astrocytomas and metastatic brain tumors on tissue microarrays. Changes in TEM1/endosialin expression in response to pro-angiogenic conditions were assessed in human endothelial cells grown in vitro. Intracranial U87MG glioblastoma (GBM) xenografts were analyzed in nude TEM1/endosialin knockout (KO) and wildtype (WT) mice. RESULTS: TEM1/endosialin was upregulated in primary and metastatic human brain tumors, where it localized primarily to the tumor vasculature and a subset of tumor stromal cells. Analysis of 275 arrayed grade II-IV astrocytomas demonstrated TEM1/endosialin expression in 79% of tumors. Robust TEM1/endosialin expression occurred in 31% of glioblastomas (grade IV astroctyomas). TEM1/endosialin expression was inversely correlated with patient age. TEM1/endosialin showed limited co-localization with CD31, alphaSMA and fibronectin in clinical specimens. In vitro, TEM1/endosialin was upregulated in human endothelial cells cultured in matrigel. Vascular Tem1/endosialin was induced in intracranial U87MG GBM xenografts grown in mice. Tem1/endosialin KO vs WT mice demonstrated equivalent survival and tumor growth when implanted with intracranial GBM xenografts, although Tem1/endosialin KO tumors were significantly more vascular than the WT counterparts. CONCLUSION: TEM1/endosialin was induced in the vasculature of high-grade brain tumors where its expression was inversely correlated with patient age. Although lack of TEM1/endosialin did not suppress growth of intracranial GBM xenografts, it did increase tumor vascularity. The cellular localization of TEM1/endosialin and its expression profile in primary and metastatic brain tumors support efforts to therapeutically target this protein, potentially via antibody mediated drug delivery strategies.


Asunto(s)
Antígenos CD/biosíntesis , Antígenos CD/genética , Antígenos de Neoplasias/biosíntesis , Antígenos de Neoplasias/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Factores de Edad , Animales , Neoplasias Encefálicas/irrigación sanguínea , Técnica del Anticuerpo Fluorescente , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Ratones Desnudos , Neovascularización Patológica/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Matrices Tisulares , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Nat Commun ; 10(1): 99, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626878

RESUMEN

Neurovascular coupling, cerebrovascular remodeling and hemodynamic changes are critical to brain function, and dysregulated in neuropathologies such as brain tumors. Interrogating these phenomena in freely behaving animals requires a portable microscope with multiple optical contrast mechanisms. Therefore, we developed a miniaturized microscope with: a fluorescence (FL) channel for imaging neural activity (e.g., GCaMP) or fluorescent cancer cells (e.g., 9L-GFP); an intrinsic optical signal (IOS) channel for imaging hemoglobin absorption (i.e., cerebral blood volume); and a laser speckle contrast (LSC) channel for imaging perfusion (i.e., cerebral blood flow). Following extensive validation, we demonstrate the microscope's capabilities via experiments in unanesthetized murine brains that include: (i) multi-contrast imaging of neurovascular changes following auditory stimulation; (ii) wide-area tonotopic mapping; (iii) EEG-synchronized imaging during anesthesia recovery; and (iv) microvascular connectivity mapping over the life-cycle of a brain tumor. This affordable, flexible, plug-and-play microscope heralds a new era in functional imaging of freely behaving animals.


Asunto(s)
Microscopía/instrumentación , Miniaturización , Monitoreo Ambulatorio/instrumentación , Neuroimagen/instrumentación , Neuroimagen/métodos , Animales , Neoplasias Encefálicas , Diseño de Equipo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones SCID
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA