Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Inorg Biochem ; 157: 52-61, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26828284

RESUMEN

The synthesis and characterization of two copper(II) complexes containing 2-(2-pyridyl)benzimidazole (PyBIm) are reported with the biological activity of these two complexes and a third Cu(II) complex containing 2-(2-pyridyl)benzothiazole (PyBTh). Complex 1, [Cu(PyBIm)(NO3)(H2O)](NO3), is a four coordinate, distorted square planar species with one ligand (N,N), nitrate and water bound to Cu(II). The [Cu(PyBIm)3](BF4)2 complex (2) has distorted octahedral geometry with a 3:1 Py(BIm) ligand to metal ratio. The distorted trigonal bi-pyramidal geometry of compound 3, [Cu(PyBTh)2(H2O)](BF4)2, is comprised of two PyBTh ligands and one water. Biological activity of 1-3 has been assessed by analyzing DNA interaction, nuclease ability, cytotoxic activity and antibacterial properties. Complex 3 exhibits potent concentration dependent SC-DNA cleavage forming single- and double-nicked DNA in contrast to the weak activity of complexes 1 and 2. Mechanistic studies indicate that all complexes utilize an oxidative mechanism however 1 and 2 employ O2(-) as the principal reactive oxygen species while the highly active 3 utilizes (1)O2. The interaction between 1-3 and DNA was investigated using fluorescence emission spectroscopy and revealed all complexes strongly intercalate DNA with Kapp values of 2.65 × 10(6), 1.85 × 10(6) and 2.72 × 10(6)M(-1), respectively. Cytotoxic effects of 1-3 were examined using HeLa and K562 cells and show cell death in the micromolar range with the activity of 1 ≈ 2 and were slightly higher than 3. Similar reactivity was observed in the antibacterial studies with E. coli and S. aureus. A detailed comparative analysis of the three complexes is presented.


Asunto(s)
Cobre/química , Imidazoles/química , Tiazoles/química , Línea Celular Tumoral , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Electroforesis en Gel de Agar , Humanos , Ligandos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier
2.
J Inorg Biochem ; 137: 1-11, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24794274

RESUMEN

A series of Cu(II) complexes with ligand frames based on quinoline derivatives appended with a benzothiazole substituent has been isolated. The complexes, Cu(Q(oBt))(NO3)2(H2O)∙CH3OH (1∙CH3OH), Cu(8OHQ(oBt))Cl2∙CH3OH (2∙CH3OH), Cu(8OQ(oBt))Cl(CH3OH)∙CH3OH (3∙CH3OH) and [Cu(8OH1/2Q(oBt))(CH3OH)(NO3)]2(NO3) (4) have been characterized by single crystal X-ray diffraction, IR and UV-visible spectroscopies, and elemental analysis. The ligand frame within the set of complexes differs in the substituent on the quinoline ring: complex 1 remains unsubstituted at this position while complexes 2-4 have a substituted OH group. In complex 2, the bound phenol remains protonated while in 3 it is a phenolato group. Complex 4 contains two complexes within the unit cell and one NO3(-) giving rise to an overall 'half-protonation'. The interaction between complexes 1-3 with CT-DNA was investigated using fluorescence emission spectroscopy and revealed 2 and 3 strongly intercalate DNA with Kapp values of 1.47×10(7)M(-1) and 3.09×10(7)M(-1), respectively. The ability of complexes 1-3 to cleave SC-DNA was monitored using gel electrophoresis. Each complex exhibits potent, concentration dependent nuclease activity forming single and double-nicked DNA as low as 10µM. The nuclease activity of complexes 1-3 is primarily dependent on (1)O2 species while ·OH radicals play a secondary role in the cleavage by complexes 2 and 3. The cytotoxic effects of 1-3 were examined using HeLa cells and show cell death in the micromolar range. The distribution of cell cycle stages remains unchanged when complexes are present indicating DNA damage may be occurring throughout the cell cycle.


Asunto(s)
Apoptosis/efectos de los fármacos , Complejos de Coordinación/química , Cobre/química , Tiadiazoles/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Complejos de Coordinación/administración & dosificación , Cristalografía por Rayos X , Células HeLa , Humanos , Ligandos , Estructura Molecular , Espectrometría de Fluorescencia
3.
Dalton Trans ; 41(18): 5662-77, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22434362

RESUMEN

Enzymes in the oxygen-activating class of mononuclear non-heme iron oxygenases (MNOs) contain a highly conserved iron center facially ligated by two histidine nitrogen atoms and one carboxylate oxygen atom that leave one face of the metal center (three binding sites) open for coordination to cofactor, substrate, and/or dioxygen. A comparative family of [Fe(II/III)(N(2)O(n))(L)(4-n))](±x), n = 1-3, L = solvent or Cl(-), model complexes, based on a ligand series that supports a facially ligated N,N,O core that is then modified to contain either one or two additional carboxylate chelate arms, has been structurally and spectroscopically characterized. EPR studies demonstrate that the high-spin d(5) Fe(III)g = 4.3 signal becomes more symmetrical as the number of carboxylate ligands decreases across the series Fe(N(2)O(3)), Fe(N(2)O(2)), and Fe(N(2)O(1)), reflecting an increase in the E/D strain of these complexes as the number of exchangeable/solvent coordination sites increases, paralleling the enhanced distribution of electronic structures that contribute to the spectral line shape. The observed systematic variations in the Fe(II)-Fe(III) oxidation-reduction potentials illustrate the fundamental influence of differential carboxylate ligation. The trend towards lower reduction potential for the iron center across the [Fe(III)(N(2)O(1))Cl(3)](-), [Fe(III)(N(2)O(2))Cl(2)](-) and [Fe(III)(N(2)O(3))Cl](-) series is consistent with replacement of the chloride anions with the more strongly donating anionic O-donor carboxylate ligands that are expected to stabilize the oxidized ferric state. This electrochemical trend parallels the observed dioxygen sensitivity of the three ferrous complexes (Fe(II)(N(2)O(1)) < Fe(II)(N(2)O(2)) < Fe(II)(N(2)O(3))), which form µ-oxo bridged ferric species upon exposure to air or oxygen atom donor (OAD) molecules. The observed oxygen sensitivity is particularly interesting and discussed in the context of α-ketoglutarate-dependent MNO enzyme mechanisms.


Asunto(s)
Compuestos Férricos/química , Compuestos Ferrosos/química , Oxigenasas de Función Mixta/química , Óxidos de Nitrógeno/química , Ácidos Carboxílicos/química , Cristalografía por Rayos X , Electroquímica , Hierro/química , Ligandos , Oxígeno/química , Fenilalanina Hidroxilasa/química , Espectrofotometría Infrarroja
4.
Inorg Chem ; 42(18): 5751-61, 2003 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-12950226

RESUMEN

The Co(III) complexes of N,N'-bis(2-mercaptophenyl)pyridine-2,6-dicarboxamide (PyPSH(4)), a designed pentadentate ligand with built-in carboxamide and thiolate groups, have been synthesized and studied to gain insight into the role of Cys-S oxidation in Co-containing nitrile hydratase (Co-NHase). Reaction of [Co(NH(3))(5)Cl]Cl(2) with PyPS(4)(-) in DMF affords the thiolato-bridged dimeric Co(III) complex (Et(4)N)(2)[Co(2)(PyPS)(2)] (1). Although the bridged structure is quite robust, reaction of (Et(4)N)(CN) with 1 in acetonitrile affords the monomeric species (Et(4)N)(2)[Co(PyPS)(CN)] (2). Oxidation of 2 with H(2)O(2) in acetonitrile gives rise to a mixture which, upon chromatographic purification, yields K(2)[Co(PyPSO(2)(OSO(2))(CN] (3), a species containing asymmetrically oxidized thiolates. The Co(III) metal center in 3 is coordinated to a S-bound sulfinate and an O-bound sulfonate (OSO(2)) group. Upon oxidation with H(2)O(2), 1 affords an asymmetrically oxidized dimer (Et(4)N)(2)[Co(2)(PyPS(SO(2)))(2)] (4) in which only the terminal thiolates are oxidized to form S-bound sulfinate groups while the bridging thiolates remain unchanged. The thiolato-bridge in 4 is also cleaved upon reaction with (Et(4)N)(CN) in acetonitrile, and one obtains (Et(4)N)(2)[Co(PyPS(SO(2)))(CN)] (5), a species that contains both coordinated thiolate and S-bound sulfinate around Co(III). The structures of 1-4 have been determined. The spectroscopic properties and reactivity of all the complexes have been studied to understand the behavior of the Co(III) site in Co-NHase. Unlike typical Co(III) complexes with bound CN(-) ligands, the Co(III) centers in 2 and 5 are labile and rapidly lose CN(-) in aqueous solutions. Since 3 does not show this lability, it appears that at least one thiolato sulfur donor is required in the first coordination sphere for the Co(III) center in such species to exhibit lability. Both 2 and 5 are converted to the aqua complexes [Co(PyPS)(H(2)O)](-) and [Co(PyPS(SO(2))(H(2)O)](-) in aqueous solutions. The pK(a) values of the bound water in these two species, determined by spectrophotometry, are 8.3 +/- 0.03 and 7.2 +/- 0.06, respectively. Oxidation of the thiolato sulfur (to sulfinate) therefore increases the acidity of the bound water. Since 2 and 5 promote hydrolysis of acetonitrile at pH values above their corresponding pK(a) values, it is also evident that a metal-bound hydroxide is a key player in the mechanism of hydrolysis by these model complexes of Co-NHase. The required presence of a Cys-sulfinic residue and one water molecule at the Co(III) site of Co-NHase as well as the optimal pH of the enzyme near 7 suggests that (i) modulation of the pK(a) of the bound water molecule at the active site of the enzyme could be one role of the oxidized Cys-S residue(s) and (ii) a cobalt-bound hydroxide could be responsible for the hydrolysis of nitriles by Co-NHase.


Asunto(s)
Cobalto/química , Cisteína/química , Hidroliasas/química , Compuestos de Azufre/química , Fenómenos Químicos , Química Física , Cristalografía por Rayos X , Indicadores y Reactivos , Cinética , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA