RESUMEN
Modification of vaccine carriers by decoration with glycans can enhance binding to and even targeting of dendritic cells (DCs), thus augmenting vaccine efficacy. To find a specific glycan-"vector" it is necessary to know glycan-binding profile of DCs. This task is not trivial; the small number of circulating blood DCs available for isolation hinders screening and therefore advancement of the profiling. It would be more convenient to employ long-term cell cultures or even primary DCs from murine blood. We therefore examined whether THP-1 (human monocyte cell line) and DC2.4 (immature murine DC-like cell line) could serve as a model for human DCs. These cells were probed with a set of glycans previously identified as binding to circulating human CD14low/-CD16+CD83+ DCs. In addition, we tested a subpopulation of murine CD14low/-CD80+СD11c+CD16+ cells reported as relating to the human CD14low/-CD16+CD83+ cells. Manα1-3(Manα1-6)Manß1-4GlcNAcß1-4GlcNAcß bound to both the cell lines and the murine CD14low/-CD80+СD11c+CD16+ cells. Primary cells, but not the cell cultures, were capable of binding GalNAcα1-3Galß (Adi), the most potent ligand for binding to human circulating DCs. In conclusion, not one of the studied cell lines proved an adequate model for DCs processes involving lectin binding. Although the glycan-binding profile of BYRB-Rb (8.17)1Iem mouse DCs could prove useful for assessing human DCs, important glycan interactions were missing, a situation which was aggravated when employing cells from the BALB/c strain. Accordingly, one must treat results from murine work with caution when seeking vaccine targeting of human DCs, and certainly should avoid cell lines such as THP-1 and DC2.4 cells.
Asunto(s)
Células Dendríticas/metabolismo , Polisacáridos/metabolismo , Animales , Humanos , Lectinas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Polisacáridos/química , Unión Proteica , Células THP-1RESUMEN
Gram scale synthesis of A (type 2) and B (type 2) tetrasaccharides in the form of 3-aminopropyl glycosides is proposed starting from 3-O-benzoyl-1,6-anhydro-N-acetylglucosamine. Its galactosylation followed by re-protection gave lactosamine derivative with single free 2'-OH group in total yield 75%. Standard fucosylation and next run of re-protection in total yield 88% gave a trisaccharide Fuc-Gal-anhydroGlcNAc with single free 3'-OH group. Its standard α-galactosylation gave protected B (type 2) tetrasaccharide. For synthesis of correspondent A tetrasaccharide seven different 2-azido-2-deoxygalactosyl (GalN3) donors were tested: 6-O-acetyl-3,4-O-isopropylidene-GalN3 thioglycoside was shown to provide the best yield (89%) and stereoselectivity (α/ß = 24:1). Further 1,6-anhydro cycle opening, spacer-arming and complete deprotection resulted in the target 3-aminopropyl glycosides of A (type 2) and B (type 2) tetrasaccharides, yields 87 and 85% correspondingly.
Asunto(s)
Acetilglucosamina/análogos & derivados , Oligosacáridos/química , Oligosacáridos/síntesis química , Acetilglucosamina/química , Técnicas de Química SintéticaRESUMEN
Seven lipophilic constructs containing Lewis (Lea, Leb, Ley) or chimeric Lewis/ABH (ALeb, BLeb, ALey, BLey) glycans were obtained starting from corresponding oligosaccharides in form of 3-aminopropyl glycosides. ALeb and BLeb pentasaccharides were synthesized via [3 + 1] blockwise approach. The constructs (neoglycolipids, or FSLs) were inserted in erythrocyte membrane, and obtained "kodecytes" were used to map the immunochemical specificity of historical and contemporary monoclonal and polyclonal blood group system Lewis reagents.
Asunto(s)
Antígenos del Grupo Sanguíneo de Lewis/química , Polisacáridos/síntesis química , Polisacáridos/inmunología , Anticuerpos Monoclonales/metabolismo , Membrana Eritrocítica/inmunología , Humanos , Antígenos del Grupo Sanguíneo de Lewis/inmunología , Estructura Molecular , Polisacáridos/químicaRESUMEN
Herein we report the synthesis of 3-aminopropyl glycosides of A (type 2) and B (type 2) tetrasaccharides via [3 + 1] block scheme. Peracetylated trichloroacetimidates of A and B trisaccharides were used as glycosyl donors. The well-known low reactivity of 4-OH group of N-acetyl-d-glucosamine forced us to test four glucosamine derivatives (3-Bz-1,6-anhydro-GlcNAc and 3-trifluoroacetamidopropyl ß-glycosides of 3-Ac-6-Bn-GlcNAc, 3-Ac-6-Bn-GlcN3, and 3-Ac-6-Bn-GlcNAc2) to select the best glycosyl acceptor for the synthesis of type 2 tetrasaccharides. The desired tetrasacchrides were not isolated, when 3-trifluoroacetamidopropyl glycosyde of 3-Ac-6-Bn-GlcNAcß was glycosylated. Glycosylation of 3-Bz-1,6-anhydro-GlcNAc derivative resulted in α-glycoside as a major product. High stereospecificity was achieved only in the synthesis of B (type 2) tetrasaccharide, when 3-trifluoroacetamidopropyl 3-Ac-6-Bn-GlcNAc2ß was applied as the glycosyl acceptor (ß/α 5:1), whereas glycosylation with trichloroacetimidate of A trisaccharide was not stereospecific (ß/α 1.3:1). Glycosylation of 3-trifluoroacetamidopropyl glycoside of 3-Ac-6-Bn-GlcN3ß with trichloroacetimidates of A and B trisaccharides provided the same stereochemical yield (ß/α 1.5:1).