Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Stem Cells ; 36(2): 265-277, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29086457

RESUMEN

The ability to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes (CMs) makes them an attractive source for repairing injured myocardium, disease modeling, and drug testing. Although current differentiation protocols yield hPSC-CMs to >90% efficiency, hPSC-CMs exhibit immature characteristics. With the goal of overcoming this limitation, we tested the effects of varying passive stretch on engineered heart muscle (EHM) structural and functional maturation, guided by computational modeling. Human embryonic stem cells (hESCs, H7 line) or human induced pluripotent stem cells (IMR-90 line) were differentiated to hPSC-derived cardiomyocytes (hPSC-CMs) in vitro using a small molecule based protocol. hPSC-CMs were characterized by troponin+ flow cytometry as well as electrophysiological measurements. Afterwards, 1.2 × 106 hPSC-CMs were mixed with 0.4 × 106 human fibroblasts (IMR-90 line) (3:1 ratio) and type-I collagen. The blend was cast into custom-made 12-mm long polydimethylsiloxane reservoirs to vary nominal passive stretch of EHMs to 5, 7, or 9 mm. EHM characteristics were monitored for up to 50 days, with EHMs having a passive stretch of 7 mm giving the most consistent formation. Based on our initial macroscopic observations of EHM formation, we created a computational model that predicts the stress distribution throughout EHMs, which is a function of cellular composition, cellular ratio, and geometry. Based on this predictive modeling, we show cell alignment by immunohistochemistry and coordinated calcium waves by calcium imaging. Furthermore, coordinated calcium waves and mechanical contractions were apparent throughout entire EHMs. The stiffness and active forces of hPSC-derived EHMs are comparable with rat neonatal cardiomyocyte-derived EHMs. Three-dimensional EHMs display increased expression of mature cardiomyocyte genes including sarcomeric protein troponin-T, calcium and potassium ion channels, ß-adrenergic receptors, and t-tubule protein caveolin-3. Passive stretch affects the structural and functional maturation of EHMs. Based on our predictive computational modeling, we show how to optimize cell alignment and calcium dynamics within EHMs. These findings provide a basis for the rational design of EHMs, which enables future scale-up productions for clinical use in cardiovascular tissue engineering. Stem Cells 2018;36:265-277.


Asunto(s)
Biología Computacional/métodos , Miocardio/citología , Línea Celular , Citometría de Flujo , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Ingeniería de Tejidos/métodos
2.
Circ Res ; 117(8): 720-30, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26291556

RESUMEN

RATIONALE: Tissue engineering approaches may improve survival and functional benefits from human embryonic stem cell-derived cardiomyocyte transplantation, thereby potentially preventing dilative remodeling and progression to heart failure. OBJECTIVE: Assessment of transport stability, long-term survival, structural organization, functional benefits, and teratoma risk of engineered heart muscle (EHM) in a chronic myocardial infarction model. METHODS AND RESULTS: We constructed EHMs from human embryonic stem cell-derived cardiomyocytes and released them for transatlantic shipping following predefined quality control criteria. Two days of shipment did not lead to adverse effects on cell viability or contractile performance of EHMs (n=3, P=0.83, P=0.87). One month after ischemia/reperfusion injury, EHMs were implanted onto immunocompromised rat hearts to simulate chronic ischemia. Bioluminescence imaging showed stable engraftment with no significant cell loss between week 2 and 12 (n=6, P=0.67), preserving ≤25% of the transplanted cells. Despite high engraftment rates and attenuated disease progression (change in ejection fraction for EHMs, -6.7±1.4% versus control, -10.9±1.5%; n>12; P=0.05), we observed no difference between EHMs containing viable and nonviable human cardiomyocytes in this chronic xenotransplantation model (n>12; P=0.41). Grafted cardiomyocytes showed enhanced sarcomere alignment and increased connexin 43 expression at 220 days after transplantation. No teratomas or tumors were found in any of the animals (n=14) used for long-term monitoring. CONCLUSIONS: EHM transplantation led to high engraftment rates, long-term survival, and progressive maturation of human cardiomyocytes. However, cell engraftment was not correlated with functional improvements in this chronic myocardial infarction model. Most importantly, the safety of this approach was demonstrated by the lack of tumor or teratoma formation.


Asunto(s)
Células Madre Embrionarias/trasplante , Supervivencia de Injerto , Trasplante de Corazón/métodos , Infarto del Miocardio/cirugía , Miocitos Cardíacos/trasplante , Músculos Papilares/trasplante , Ingeniería de Tejidos/métodos , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Supervivencia Celular , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Células Madre Embrionarias/inmunología , Células Madre Embrionarias/metabolismo , Trasplante de Corazón/efectos adversos , Xenoinjertos , Humanos , Inmunosupresores/farmacología , Masculino , Contracción Miocárdica , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Músculos Papilares/inmunología , Músculos Papilares/metabolismo , Músculos Papilares/patología , Músculos Papilares/fisiopatología , Ratas Desnudas , Ratas Sprague-Dawley , Volumen Sistólico , Factores de Tiempo , Transfección
3.
Dev Biol ; 393(1): 183-93, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24954155

RESUMEN

Precise control of lineage-specific gene expression in the neural stem/progenitor cells is crucial for generation of the diversity of neuronal and glial cell types in the central nervous system (CNS). The mechanism underlying such gene regulation, however, is not fully elucidated. Here, we report that a 377 bp evolutionarily conserved DNA fragment (CR5), located approximately 32 kbp upstream of Olig2 transcription start site, acts as a cis-regulator for gene expression in the development of the neonatal forebrain. CR5 is active in a time-specific and brain region-restricted manner. CR5 activity is not detected in the embryonic stage, but it is exclusively in a subset of Sox5+ cells in the neonatal ventral forebrain. Furthermore, we show that Sox5 binding motif in CR5 is important for this cell-specific gene regulatory activity; mutation of Sox5 binding motif in CR5 alters reporter gene expression with different cellular composition. Together, our study provides new insights into the regulation of cell-specific gene expression during CNS development.


Asunto(s)
Células-Madre Neurales/metabolismo , Neurogénesis/genética , Prosencéfalo/embriología , Factores de Transcripción SOXD/genética , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Bovinos , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Prosencéfalo/metabolismo , Unión Proteica , Factores de Transcripción SOXD/biosíntesis , Alineación de Secuencia
4.
Dev Biol ; 372(2): 217-28, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23022658

RESUMEN

Interneurons comprise approximately one third of the total cortical neurons in the mammalian cerebral cortex. Studies have revealed many details in the generation of this cell type. However, the mechanism that defines interneuron-lineage specific gene expression is not well understood. Gene regulatory elements, e.g., promoters, enhancers, and trans-acting factors, are essential for the proper control of gene expression. Here, we report that a novel evolutionarily conserved cis-element in the second intron of the Notch1 locus plays an important role in regulating gene expression in interneuron progenitors. The spatiotemporal activity of the cis-element in the developing central nervous system (CNS) was determined by both transient reporter expression in the developing chick and a transgenic mouse model. Its activity is well correlated with neurogenesis in both the chick and mouse and restricted to neural progenitor cells in the ganglionic eminence that are fated to differentiate into GABAergic interneurons of the neocortex. We further demonstrate that the cis-element activity requires the binding motif for trans-acting factors Gsh1/Barx2/Brn3. Deletion of this binding motif abolishes reporter gene expression. Together, these data provide new insights into the regulatory mechanisms of interneuron development in the vertebrate CNS.


Asunto(s)
Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Interneuronas/metabolismo , Células-Madre Neurales/metabolismo , Receptor Notch1/genética , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Movimiento Celular , Embrión de Pollo , Pollos , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Células Madre Embrionarias/citología , Sitios Genéticos , Interneuronas/citología , Ratones , Células-Madre Neurales/citología , Unión Proteica , Receptor Notch1/metabolismo
5.
Stem Cells Transl Med ; 8(1): 7-13, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30251393

RESUMEN

Stem cells are unique cell populations able to copy themselves exactly as well as specialize into new cell types. Stem cells isolated from early stages of embryo development are pluripotent, i.e., can be differentiated into multiple different cell types. In addition, scientists have found a way of reverting specialized cells from an adult into an embryonic-like state. These cells, that are as effective as cells isolated from early embryos, are termed induced pluripotent stem cells (iPSCs). The potency of iPSC technology is recently being employed by researchers aimed at helping wildlife and environmental conservation efforts. Ambitious attempts using iPSCs are being made to preserve endangered animals as well as reanimate extinct species, merging science fiction with reality. Other research to sustain natural resources and promote animal welfare are exploring iPSCs for laboratory grown animal products without harm to animals offering unorthodox options for creating meat, leather, and fur. There is great potential in iPSC technology and what can be achieved in consumerism, animal welfare, and environmental protection and conservation. Here, we discuss current research in the field of iPSCs and how these research groups are attempting to achieve their goals. Stem Cells Translational Medicine 2019;8:7-13.


Asunto(s)
Bienestar del Animal , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Biotecnología , Conservación de los Recursos Naturales , Células Madre Embrionarias/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
6.
Biomater Sci ; 5(8): 1567-1578, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28715029

RESUMEN

Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 µm fiber diameter) or parallel-aligned (7 µm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding. Here we demonstrated that aligned microfibrous scaffolds induced iCM alignment along the direction of the aligned microfibers after 2 days of iCM seeding, as well as promoted greater iCM maturation by increasing the sarcomeric length and gene expression of myosin heavy chain adult isoform (MYH7), in comparison to randomly oriented scaffolds. Furthermore, the benefit of scaffold anisotropy was evident in the significantly higher maximum contraction velocity of iCMs on the aligned scaffolds, compared to randomly oriented scaffolds, at 12 days of culture. Co-seeding of iCMs with iECs led to reduced contractility, compared to when iCMs were seeded alone. These findings demonstrate a dominant role of scaffold anisotropy in engineering cardiovascular tissues that maintain iCM organization and contractile function.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Andamios del Tejido/química , Anisotropía , Humanos , Porosidad , Ingeniería de Tejidos
7.
Adv Drug Deliv Rev ; 96: 234-244, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26428619

RESUMEN

Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing.


Asunto(s)
Enfermedades Cardiovasculares , Evaluación Preclínica de Medicamentos/métodos , Corazón , Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos/métodos , Investigación Biomédica Traslacional/métodos , Animales , Cardiotoxicidad , Enfermedades Cardiovasculares/tratamiento farmacológico , Corazón/efectos de los fármacos , Corazón/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Modelos Cardiovasculares , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos
8.
Sci Rep ; 6: 38665, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27924849

RESUMEN

Notch1 signaling plays a critical role in maintaining and determining neural stem/progenitor cell (NSPC) fate, yet the transcriptional mechanism controlling Notch1 specific expression in NSPCs remains incomplete. Here, we show transcription factor Nkx6.1 interacts with a cis-element (CR2, an evolutionarily conserved non-coding fragment in the second intron of Notch1 locus) and regulates the expression of Notch1 in ventral NSPCs of the developing spinal cord. We show that the Notch1 expression is modulated by the interaction of Nkx6.1 with a 139 bp enhancer sequence within CR2. Knockdown or overexpression of Nkx6.1 leads to down- or up-regulated Notch1 expression, respectively. In CR2-GFP transgenic mouse, GFP expression was found prominent in the ventricular zone and neural progenitor cells from embryonic day 9.5 to postnatal day 7. GFP+ cells were mainly neural progenitors for interneurons and not for motoneurons or glial cells. Moreover, GFP expression persisted in a subset of ependymal cells in the adult spinal cord, suggesting that CR2 is active in both embryonic and adult NSPCs. Together our data reveal a novel mechanism of Notch1 transcriptional regulation in the ventral spinal cord by Nkx6.1 via its binding with Notch1 enhancer CR2 during embryonic development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/metabolismo , Receptor Notch1/genética , Asta Ventral de la Médula Espinal/citología , Asta Ventral de la Médula Espinal/metabolismo , Animales , Recuento de Células , Diferenciación Celular , Elementos de Facilitación Genéticos , Genes Reporteros , Inmunohistoquímica , Interneuronas/citología , Interneuronas/metabolismo , Ratones , Modelos Biológicos , Neuronas Motoras/citología , Neurogénesis/genética , Unión Proteica , Transcripción Genética
9.
Biol Open ; 3(2): 172-84, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24463367

RESUMEN

Topoisomerase IIbeta (Top2b) is an enzyme that modulates DNA supercoiling by catalyzing the passage of DNA duplexes through one another. It is ubiquitously expressed in postmitotic cells and known to function during the development of neuromuscular junctions in the diaphragm and the proper formation of laminar structure in the cerebral cortex. However, due to the perinatal death phenotype of the traditional constitutive and brain-specific Top2b knockout mice, the precise in vivo function of Top2b, especially during postnatal neural development, remains to be determined. Using both the constitutive and retina-specific knockout mouse models, we showed that Top2b deficiency resulted in delayed neuronal differentiation, degeneration of the plexiform layers and outer segment of photoreceptors, as well as dramatic reduction in cell number in the retina. Genome-wide transcriptome analysis by RNA sequencing revealed that genes involved in neuronal survival and neural system development were preferentially affected in Top2b-deficient retinas. Collectively, our findings have indicated an important function of Top2b in proper development and the maintenance/survival of postmitotic neurons in the retina.

10.
J Neurotrauma ; 26(7): 979-93, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19257808

RESUMEN

Cell-based therapy has been widely evaluated in spinal cord injury (SCI) animal models and shown to improve functional recovery. However, host response to cell transplants at gene expression level is rarely discussed. We reported previously that acute transplantation of radial glial cells RG3.6 following SCI promoted early locomotion improvement within 1 week post-injury. To identify rapid molecular changes induced by RG3.6 transplantation in the host tissue, distal spinal cord segments were subjected to microarray analysis. Although RG3.6 transplantation, reduced activity of macrophages as early as 1-2 weeks post-injury, the expression levels of inflammatory genes (e.g., IL-6, MIP-2, MCP-1) were not decreased by RG3.6 treatment as compared to medium or other cell controls at 6-12 h post-injury. However, genes associated with tissue protection (Hsp70 and Hsp32) and neural cell development (Foxg1, Top2a, Sox11, Nkx2.2, Vimentin) were found to be significantly up-regulated by RG3.6 transplants. Foxg1 was the most highly induced gene in the RG3.6-treated spinal cords, and its expression by immunocytochemistry was confirmed in the host tissue. Moreover, RG3.6 treatment boosted the number of Nkx2.2 cells in the spinal cord, and these cells frequently co-expressed NG2, which marks progenitor cells. Taken together, these results demonstrate that radial glial transplants induced rapid and specific gene expression in the injured host tissue, and suggest that these early responses are associated with mechanisms of tissue protection and activation of endogenous neural progenitor cells.


Asunto(s)
Neuroglía/trasplante , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Médula Espinal/metabolismo , Análisis de Varianza , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica , Perfilación de la Expresión Génica , Proteína Homeobox Nkx-2.2 , Laminectomía , Neurogénesis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Traumatismos de la Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA